Deep learning as phase retrieval tool for CARS spectra

被引:42
|
作者
Houhou, Rola [1 ,2 ,3 ]
Barman, Parijat [3 ]
Schmitt, Micheal [1 ,2 ]
Meyer, Tobias [1 ,2 ,3 ]
Popp, Juergen [1 ,2 ,3 ]
Bocklitz, Thomas [1 ,2 ,3 ]
机构
[1] Friedrich Schiller Univ, Inst Phys Chem, Helmholtzweg 4, D-07743 Jena, Germany
[2] Friedrich Schiller Univ, Abbe Ctr Photon, Helmholtzweg 4, D-07743 Jena, Germany
[3] Leibniz Inst Photon Technol, Albert Einstein Str 9, D-07745 Jena, Germany
关键词
MAXIMUM-ENTROPY MODEL; RAMAN-SCATTERING; NEURAL-NETWORKS; COHERENT; SPECTROSCOPY; TIME;
D O I
10.1364/OE.390413
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Finding efficient and reliable methods for the extraction of the phase in optical measurements is challenging and has been widely investigated. Although sophisticated optical settings, e.g. holography, measure directly the phase, the use of algorithmic methods has gained attention due to its efficiency, fast calculation and easy setup requirements. We investigated three phase retrieval methods: the maximum entropy technique (MEM), the Kramers-Kronig relation (KK), and for the first time deep learning using the Long Short-Term Memory network (LSTM). LSTM shows superior results for the phase retrieval problem of coherent anti-Stokes Raman spectra in comparison to MEM and KK. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.
引用
收藏
页码:21002 / 21024
页数:23
相关论文
共 50 条
  • [21] Multi-task deep learning of near infrared spectra for improved grain quality trait predictions
    Assadzadeh, S.
    Walker, C. K.
    McDonald, L. S.
    Maharjan, P.
    Panozzo, J. F.
    JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2020, 28 (5-6) : 275 - 286
  • [22] Optimizing Big Data Retrieval and Job Scheduling Using Deep Learning Approaches
    Chang, Bao Rong
    Tsai, Hsiu-Fen
    Lin, Yu-Chieh
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 134 (02): : 783 - 815
  • [23] Pure Isotropic Proton NMR Spectra in Solids using Deep Learning
    Cordova, Manuel
    Moutzouri, Pinelopi
    de Almeida, Bruno Simoes
    Torodii, Daria
    Emsley, Lyndon
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (08)
  • [24] A Deep Learning Approach for Detecting Colorectal Cancer via Raman Spectra
    Cao, Zheng
    Pan, Xiang
    Yu, Hongyun
    Hua, Shiyuan
    Wang, Da
    Chen, Danny Z.
    Zhou, Min
    Wu, Jian
    BME FRONTIERS, 2022, 2022
  • [25] Blood species identification based on deep learning analysis of Raman spectra
    Huang, Shan
    Wang, Peng
    Tian, Yubing
    Bai, Pengli
    Chen, DaQing
    Wang, Ce
    Chen, JianSheng
    Liu, ZhaoBang
    Zheng, Jian
    Yao, WenMing
    Li, JianXin
    Gao, Jing
    BIOMEDICAL OPTICS EXPRESS, 2019, 10 (12) : 6129 - 6144
  • [26] A novel analysis method for electrochemical impedance spectra using deep learning
    Chang, Byoung-Yong
    ELECTROCHIMICA ACTA, 2023, 462
  • [27] Classification of osteoarthritic and healthy cartilage using deep learning with Raman spectra
    Kok, Yong En
    Crisford, Anna
    Parkes, Andrew
    Venkateswaran, Seshasailam
    Oreffo, Richard
    Mahajan, Sumeet
    Pound, Michael
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [28] Fast extraction of resonant vibrational response from CARS spectra with arbitrary nonresonant background
    Liu, Yuexin
    Lee, Young Jong
    Cicerone, Marcus T.
    JOURNAL OF RAMAN SPECTROSCOPY, 2009, 40 (07) : 726 - 731
  • [29] Non-resonant background removal in broadband CARS microscopy using deep-learning algorithms
    Vernuccio, Federico
    Broggio, Elia
    Sorrentino, Salvatore
    Bresci, Arianna
    Junjuri, Rajendhar
    Ventura, Marco
    Vanna, Renzo
    Bocklitz, Thomas
    Bregonzio, Matteo
    Cerullo, Giulio
    Rigneault, Herve
    Polli, Dario
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [30] Deep learning for virtual orthodontic bracket removal: tool establishment and application
    Ruomei Li
    Cheng Zhu
    Fengting Chu
    Quan Yu
    Di Fan
    Ningjuan Ouyang
    Yu Jin
    Weiming Guo
    Lunguo Xia
    Qiping Feng
    Bing Fang
    Clinical Oral Investigations, 28