Deep learning as phase retrieval tool for CARS spectra

被引:42
|
作者
Houhou, Rola [1 ,2 ,3 ]
Barman, Parijat [3 ]
Schmitt, Micheal [1 ,2 ]
Meyer, Tobias [1 ,2 ,3 ]
Popp, Juergen [1 ,2 ,3 ]
Bocklitz, Thomas [1 ,2 ,3 ]
机构
[1] Friedrich Schiller Univ, Inst Phys Chem, Helmholtzweg 4, D-07743 Jena, Germany
[2] Friedrich Schiller Univ, Abbe Ctr Photon, Helmholtzweg 4, D-07743 Jena, Germany
[3] Leibniz Inst Photon Technol, Albert Einstein Str 9, D-07745 Jena, Germany
关键词
MAXIMUM-ENTROPY MODEL; RAMAN-SCATTERING; NEURAL-NETWORKS; COHERENT; SPECTROSCOPY; TIME;
D O I
10.1364/OE.390413
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Finding efficient and reliable methods for the extraction of the phase in optical measurements is challenging and has been widely investigated. Although sophisticated optical settings, e.g. holography, measure directly the phase, the use of algorithmic methods has gained attention due to its efficiency, fast calculation and easy setup requirements. We investigated three phase retrieval methods: the maximum entropy technique (MEM), the Kramers-Kronig relation (KK), and for the first time deep learning using the Long Short-Term Memory network (LSTM). LSTM shows superior results for the phase retrieval problem of coherent anti-Stokes Raman spectra in comparison to MEM and KK. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.
引用
收藏
页码:21002 / 21024
页数:23
相关论文
共 50 条
  • [1] Evaluating different deep learning models for efficient extraction of Raman signals from CARS spectra
    Junjuri, Rajendhar
    Saghi, Ali
    Lensu, Lasse
    Vartiainen, Erik M.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (24) : 16340 - 16353
  • [2] Convolutional neural network-based retrieval of Raman signals from CARS spectra
    Junjuri, Rajendhar
    Saghi, Ali
    Lensu, Lasse
    Vartiainen, Erik M.
    OPTICS CONTINUUM, 2022, 1 (06): : 1324 - 1339
  • [3] DeepPhaseCut: Deep Relaxation in Phase for Unsupervised Fourier Phase Retrieval
    Cha, Eunju
    Lee, Chanseok
    Jang, Mooseok
    Ye, Jong Chul
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9931 - 9943
  • [4] Deep learning as a tool for ecology and evolution
    Borowiec, Marek L.
    Dikow, Rebecca B.
    Frandsen, Paul B.
    McKeeken, Alexander
    Valentini, Gabriele
    White, Alexander E.
    METHODS IN ECOLOGY AND EVOLUTION, 2022, 13 (08): : 1640 - 1660
  • [5] Effect of non-resonant background on the extraction of Raman signals from CARS spectra using deep neural networks
    Junjuri, Rajendhar
    Saghi, Ali
    Lensu, Lasse
    Vartiainen, Erik M.
    RSC ADVANCES, 2022, 12 (44) : 28755 - 28766
  • [6] Maximum entropy and time-domain Kramers-Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy
    Cicerone, Marcus T.
    Aamer, Khaled A.
    Lee, Young Jong
    Vartiainen, Erik
    JOURNAL OF RAMAN SPECTROSCOPY, 2012, 43 (05) : 637 - 643
  • [7] Interactive Spoken Content Retrieval by Deep Reinforcement Learning
    Wu, Yen-Chen
    Lin, Tzu-Hsiang
    Chen, Yang-De
    Lee, Hung-Yi
    Lee, Lin-Shan
    17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 943 - 947
  • [8] Deep learning pipeline for quality filtering of MRSI spectra
    Rakic, Mladen
    Turco, Federico
    Weng, Guodong
    Maes, Frederik
    Sima, Diana M.
    Slotboom, Johannes
    NMR IN BIOMEDICINE, 2024, 37 (07)
  • [9] Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform
    Liu, Yuexin
    Lee, Young Jong
    Cicerone, Marcus T.
    OPTICS LETTERS, 2009, 34 (09) : 1363 - 1365
  • [10] Tool recommender system in Galaxy using deep learning
    Kumar, Anup
    Rasche, Helena
    Gruening, Bjoern
    Backofen, Rolf
    GIGASCIENCE, 2021, 10 (01):