The Global Methane Budget 2000-2017

被引:1447
|
作者
Saunois, Marielle [1 ]
Stavert, Ann R. [2 ,3 ]
Poulter, Ben [4 ]
Bousquet, Philippe [1 ]
Canadell, Josep G. [2 ,3 ]
Jackson, Robert B. [5 ,6 ]
Raymond, Peter A. [7 ]
Dlugokencky, Edward J. [8 ]
Houweling, Sander [9 ,10 ]
Patra, Prabir K. [11 ,12 ]
Ciais, Philippe [1 ]
Arora, Vivek K. [13 ]
Bastviken, David [14 ]
Bergamaschi, Peter [15 ]
Blake, Donald R. [16 ]
Brailsford, Gordon [17 ]
Bruhwiler, Lori [8 ]
Carlson, Kimberly M. [18 ,19 ]
Carrol, Mark [74 ]
Castaldi, Simona [20 ,21 ,22 ]
Chandra, Naveen [11 ]
Crevoisier, Cyril [23 ]
Crill, Patrick M. [24 ,25 ]
Covey, Kristofer [26 ]
Curry, Charles L. [27 ,75 ]
Etiope, Giuseppe [28 ,29 ]
Frankenberg, Christian [30 ,31 ]
Gedney, Nicola [32 ]
Hegglin, Michaela, I [33 ]
Hoglund-Isaksson, Lena [34 ]
Hugelius, Gustaf [25 ,35 ]
Ishizawa, Misa [36 ]
Ito, Akihiko [36 ]
Janssens-Maenhout, Greet [15 ]
Jensen, Katherine M. [37 ]
Joos, Fortunat [38 ,39 ]
Kleinen, Thomas [40 ]
Krummel, Paul B. [41 ]
Langenfelds, Ray L. [41 ]
Laruelle, Goulven G. [42 ]
Liu, Licheng [43 ]
Machida, Toshinobu [36 ]
Maksyutov, Shamil [36 ]
McDonald, Kyle C. [37 ]
McNorton, Joe [44 ]
Miller, Paul A. [45 ]
Melton, Joe R. [46 ]
Morino, Isamu [36 ]
Muller, Jurek [38 ,39 ]
Murguia-Flores, Fabiola [47 ]
机构
[1] Univ Paris Saclay, Lab Sci Climat & Environm, LSCE IPSL CEA CNRS UVSQ, F-91191 Gif Sur Yvette, France
[2] CSIRO Oceans & Atmosphere, Global Carbon Project, Aspendale, Vic 3195, Australia
[3] CSIRO Oceans & Atmosphere, Global Carbon Project, Canberra, ACT 2601, Australia
[4] NASA, Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[5] Stanford Univ, Woods Inst Environm, Dept Earth Syst Sci, Stanford, CA 94305 USA
[6] Stanford Univ, Precourt Inst Energy, Stanford, CA 94305 USA
[7] Yale Univ, Yale Sch Environm, New Haven, CT 06511 USA
[8] NOAA, Global Monitoring Lab, 325 Broadway, Boulder, CO 80305 USA
[9] SRON Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands
[10] Vrije Univ Amsterdam, Dept Earth Sci, VU Amsterdam, Earth & Climate Cluster, Amsterdam, Netherlands
[11] JAMSTEC, Res Inst Global Change, 3173-25 Showa Machi, Yokohama, Kanagawa 2360001, Japan
[12] Chiba Univ, Ctr Environm Remote Sensing, Chiba, Japan
[13] Environm & Climate Change Canada, Climate Res Div, Canadian Ctr Climate Modelling & Anal, Victoria, BC V8W 2Y2, Canada
[14] Linkoping Univ, Dept Themat Studies Environm Change, S-58183 Linkoping, Sweden
[15] European Commiss Joint Res Ctr, Via E Fermi 2749, I-21027 Ispra, VA, Italy
[16] Univ Calif Irvine, Dept Chem, 570 Rowland Hall, Irvine, CA 92697 USA
[17] Natl Inst Water & Atmospher Res, 301 Evans Bay Parade, Wellington, New Zealand
[18] NYU, Dept Environm Studies, New York, NY 10003 USA
[19] Univ Hawaii, Dept Nat Resources & Environm Management, Honolulu, HI 96822 USA
[20] Univ Campania Luigi Vanvitelli, Dipartimento Sci Ambientali Biol & Farmaceut, Via Vivaldi 43, I-81100 Caserta, Italy
[21] RUDN Univ, Dept Landscape Design & Sustainable Ecosyst, Moscow, Russia
[22] Ctr Euro Mediterraneo Cambiamenti Climat, Impacts Agr Forests & Ecosyst Serv Div, Via Augusto Imperatore 16, I-73100 Lecce, Italy
[23] Ecole Polytech, Lab Meteorol Dynam, LMD IPSL, F-91120 Palaiseau, France
[24] Stockholm Univ, Dept Geol Sci, Svante Arrhenius Vag 8, S-10691 Stockholm, Sweden
[25] Stockholm Univ, Bolin Ctr Climate Res, Svante Arrhenius Vag 8, S-10691 Stockholm, Sweden
[26] Skidmore Coll, Environm Studies & Sci Program, Saratoga Springs, NY 12866 USA
[27] Univ Victoria, Pacific Climate Impacts Consortium, House 1,POB 1700 STN CSC, Victoria, BC V8W 2Y2, Canada
[28] Ist Nazl Geofis & Vulcanol, Sez Roma 2, Via V Murata 605, I-00143 Rome, Italy
[29] Babes Bolyai Univ, Fac Environm Sci & Engn, Cluj Napoca, Romania
[30] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
[31] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
[32] Met Off Hadley Ctr, Joint Ctr Hydrometeorol Res, Maclean Bldg, Wallingford OX10 8BB, Oxon, England
[33] Univ Reading, Dept Meteorol, Reading RG6 6BB, Berks, England
[34] Int Inst Appl Syst Anal IIASA, Air Qual & Greenhouse Gases Program AIR, A-2361 Laxenburg, Austria
[35] Stockholm Univ, Dept Phys Geog, S-10691 Stockholm, Sweden
[36] Natl Inst Environm Studies NIES, Ctr Global Environm Res, Onogawa 16-2, Tsukuba, Ibaraki 3058506, Japan
[37] CUNY City Coll, Dept Earth & Atmospher Sci, New York, NY 10031 USA
[38] Univ Bern, Phys Inst, Climate & Environm Phys, Sidlerstr 5, CH-3012 Bern, Switzerland
[39] Univ Bern, Oeschger Ctr Climate Change Res, Sidlerstr 5, CH-3012 Bern, Switzerland
[40] Max Planck Inst Meteorol, Bundesstr 53, D-20146 Hamburg, Germany
[41] CSIRO Oceans & Atmosphere, Climate Sci Ctr, Aspendale, Vic 3195, Australia
[42] Univ Libre Bruxelles, Dept Geosci Environm & Soc, B-1050 Brussels, Belgium
[43] Purdue Univ, Dept Earth, Dept Agron, W Lafayette, IN 47907 USA
[44] European Ctr Medium Range Weather Forecasts, Res Dept, Reading, Berks, England
[45] Lund Univ, Dept Phys Geog & Ecosyst Sci, Solvegatan 12, S-22362 Lund, Sweden
[46] Environm & Climate Change Canada, Climate Res Div, Victoria, BC V8W 2Y2, Canada
[47] Univ Bristol, Sch Geog Sci, Bristol BS8 1SS, Avon, England
[48] NOAA, Geophys Fluid Dynam Lab GFDL, Princeton, NJ 08540 USA
[49] Meteorol Res Inst MRI, Nagamine 1-1, Tsukuba, Ibaraki 3050052, Japan
[50] Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England
关键词
GREENHOUSE-GAS EMISSIONS; BIOMASS BURNING EMISSIONS; PROCESS-BASED MODEL; GOSAT SWIR XCO2; TM 4D-VAR V1.0; ATMOSPHERIC METHANE; NATURAL-GAS; CARBON-DIOXIDE; CH4; EMISSIONS; TRACE GASES;
D O I
10.5194/essd-12-1561-2020
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). For the 2008-2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr(-1) (range 550-594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr(-1) or similar to 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336-376 Tg CH4 yr(-1) or 50 %-65 %). The mean annual total emission for the new decade (2008-2017) is 29 Tg CH4 yr(-1) larger than our estimate for the previous decade (2000-2009), and 24 Tg CH4 yr(-1) larger than the one reported in the previous budget for 2003-2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr(-1), range 594-881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (similar to 65 % of the global budget, < 30 degrees N) compared to mid-latitudes (similar to 30 %, 30-60 degrees N) and high northern latitudes (similar to 4 %, 60-90 degrees N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters. Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr(-1) lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr(-1) by 8 Tg CH4 yr(-1), respectively. However, the overall discrepancy between bottomup and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning. The data presented here can be downloaded from https://doi.org/10.18160/GCP-CH4-2019 (Saunois et al., 2020) and from the Global Carbon Project.
引用
收藏
页码:1561 / 1623
页数:63
相关论文
共 50 条
  • [1] Global Epidemiology of Diphtheria, 2000-2017
    Clarke, Kristie E. N.
    MacNeil, Adam
    Hadler, Stephen
    Scott, Colleen
    Tiwari, Tejpratap S. P.
    Cherian, Thomas
    EMERGING INFECTIOUS DISEASES, 2019, 25 (10) : 1834 - 1842
  • [2] Trends in Global Aquaculture and Aquafeed Production: 2000-2017
    Tacon, Albert G. J.
    REVIEWS IN FISHERIES SCIENCE & AQUACULTURE, 2020, 28 (01) : 43 - 56
  • [3] The global methane budget 2000-2012
    Saunois, Marielle
    Bousquet, Philippe
    Poulter, Ben
    Peregon, Anna
    Ciais, Philippe
    Canadell, Josep G.
    Dlugokencky, Edward J.
    Etiope, Giuseppe
    Bastviken, David
    Houweling, Sander
    Janssens-Maenhout, Greet
    Tubiello, Francesco N.
    Castaldi, Simona
    Jackson, Robert B.
    Alexe, Mihai
    Arora, Vivek K.
    Beerling, David J.
    Bergamaschi, Peter
    Blake, Donald R.
    Brailsford, Gordon
    Brovkin, Victor
    Bruhwiler, Lori
    Crevoisier, Cyril
    Crill, Patrick
    Covey, Kristofer
    Curry, Charles
    Frankenberg, Christian
    Gedney, Nicola
    Hoeglund-Isaksson, Lena
    Ishizawa, Misa
    Ito, Akihiko
    Joos, Fortunat
    Kim, Heon-Sook
    Kleinen, Thomas
    Krummel, Paul
    Lamarque, Jean-Francois
    Langenfelds, Ray
    Locatelli, Robin
    Machida, Toshinobu
    Maksyutov, Shamil
    McDonald, Kyle C.
    Marshall, Julia
    Melton, Joe R.
    Morino, Isamu
    Naik, Vaishali
    O'Doherty, Simon
    Parmentier, Frans-Jan W.
    Patra, Prabir K.
    Peng, Changhui
    Peng, Shushi
    EARTH SYSTEM SCIENCE DATA, 2016, 8 (02) : 697 - 751
  • [4] Global atmospheric carbon monoxide budget 2000-2017 inferred from multi-species atmospheric inversions
    Zheng, Bo
    Chevallier, Frederic
    Yin, Yi
    Ciais, Philippe
    Fortems-Cheiney, Audrey
    Deeter, Merritt N.
    Parker, Robert J.
    Wang, Yilong
    Worden, Helen M.
    Zhao, Yuanhong
    EARTH SYSTEM SCIENCE DATA, 2019, 11 (03) : 1411 - 1436
  • [5] WHAT WAS THE ACTUAL BUDGET IMPACT OF ORPHAN MEDICINAL PRODUCTS BETWEEN 2000-2017 IN EUROPE?
    Mestre-Ferrandiz, J.
    Palaska, C.
    Kelly, T.
    Hutchings, A.
    Parnaby, A.
    VALUE IN HEALTH, 2019, 22 : S854 - S854
  • [6] Catalan theater today 2000-2017
    Momblant Ribas, Marta
    HISPANIC RESEARCH JOURNAL-IBERIAN AND LATIN AMERICAN STUDIES, 2020, 21 (04): : 471 - 473
  • [7] A bibliometric assessment of global publication output on Buruli ulcer during 2000-2017
    Bansal, Sonia
    COLLNET JOURNAL OF SCIENTOMETRICS AND INFORMATION MANAGEMENT, 2019, 13 (01) : 65 - 77
  • [8] Effect: The Colombian Case for 2000-2017
    Ortega, Jose Marcelo Torres
    De la Rosa, Jorge Mario Ortega
    LECTURAS DE ECONOMIA, 2022, (97): : 79 - 111
  • [9] Status of Strongyloidiasis in Japan, 2000-2017
    Ikuno, Hiroshi
    Ishikawa, Takashi
    Norose, Kazumi
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2020, 103 (02): : 727 - 734
  • [10] Drivers of global and national CO2 emissions changes 2000-2017
    Xia, Qiwen
    Wang, Hailin
    Liu, Xinzhe
    Pan, Xunzhang
    CLIMATE POLICY, 2021, 21 (05) : 604 - 615