The Global Methane Budget 2000-2017

被引:1465
作者
Saunois, Marielle [1 ]
Stavert, Ann R. [2 ,3 ]
Poulter, Ben [4 ]
Bousquet, Philippe [1 ]
Canadell, Josep G. [2 ,3 ]
Jackson, Robert B. [5 ,6 ]
Raymond, Peter A. [7 ]
Dlugokencky, Edward J. [8 ]
Houweling, Sander [9 ,10 ]
Patra, Prabir K. [11 ,12 ]
Ciais, Philippe [1 ]
Arora, Vivek K. [13 ]
Bastviken, David [14 ]
Bergamaschi, Peter [15 ]
Blake, Donald R. [16 ]
Brailsford, Gordon [17 ]
Bruhwiler, Lori [8 ]
Carlson, Kimberly M. [18 ,19 ]
Carrol, Mark [74 ]
Castaldi, Simona [20 ,21 ,22 ]
Chandra, Naveen [11 ]
Crevoisier, Cyril [23 ]
Crill, Patrick M. [24 ,25 ]
Covey, Kristofer [26 ]
Curry, Charles L. [27 ,75 ]
Etiope, Giuseppe [28 ,29 ]
Frankenberg, Christian [30 ,31 ]
Gedney, Nicola [32 ]
Hegglin, Michaela, I [33 ]
Hoglund-Isaksson, Lena [34 ]
Hugelius, Gustaf [25 ,35 ]
Ishizawa, Misa [36 ]
Ito, Akihiko [36 ]
Janssens-Maenhout, Greet [15 ]
Jensen, Katherine M. [37 ]
Joos, Fortunat [38 ,39 ]
Kleinen, Thomas [40 ]
Krummel, Paul B. [41 ]
Langenfelds, Ray L. [41 ]
Laruelle, Goulven G. [42 ]
Liu, Licheng [43 ]
Machida, Toshinobu [36 ]
Maksyutov, Shamil [36 ]
McDonald, Kyle C. [37 ]
McNorton, Joe [44 ]
Miller, Paul A. [45 ]
Melton, Joe R. [46 ]
Morino, Isamu [36 ]
Muller, Jurek [38 ,39 ]
Murguia-Flores, Fabiola [47 ]
机构
[1] Univ Paris Saclay, Lab Sci Climat & Environm, LSCE IPSL CEA CNRS UVSQ, F-91191 Gif Sur Yvette, France
[2] CSIRO Oceans & Atmosphere, Global Carbon Project, Aspendale, Vic 3195, Australia
[3] CSIRO Oceans & Atmosphere, Global Carbon Project, Canberra, ACT 2601, Australia
[4] NASA, Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[5] Stanford Univ, Woods Inst Environm, Dept Earth Syst Sci, Stanford, CA 94305 USA
[6] Stanford Univ, Precourt Inst Energy, Stanford, CA 94305 USA
[7] Yale Univ, Yale Sch Environm, New Haven, CT 06511 USA
[8] NOAA, Global Monitoring Lab, 325 Broadway, Boulder, CO 80305 USA
[9] SRON Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands
[10] Vrije Univ Amsterdam, Dept Earth Sci, VU Amsterdam, Earth & Climate Cluster, Amsterdam, Netherlands
[11] JAMSTEC, Res Inst Global Change, 3173-25 Showa Machi, Yokohama, Kanagawa 2360001, Japan
[12] Chiba Univ, Ctr Environm Remote Sensing, Chiba, Japan
[13] Environm & Climate Change Canada, Climate Res Div, Canadian Ctr Climate Modelling & Anal, Victoria, BC V8W 2Y2, Canada
[14] Linkoping Univ, Dept Themat Studies Environm Change, S-58183 Linkoping, Sweden
[15] European Commiss Joint Res Ctr, Via E Fermi 2749, I-21027 Ispra, VA, Italy
[16] Univ Calif Irvine, Dept Chem, 570 Rowland Hall, Irvine, CA 92697 USA
[17] Natl Inst Water & Atmospher Res, 301 Evans Bay Parade, Wellington, New Zealand
[18] NYU, Dept Environm Studies, New York, NY 10003 USA
[19] Univ Hawaii, Dept Nat Resources & Environm Management, Honolulu, HI 96822 USA
[20] Univ Campania Luigi Vanvitelli, Dipartimento Sci Ambientali Biol & Farmaceut, Via Vivaldi 43, I-81100 Caserta, Italy
[21] RUDN Univ, Dept Landscape Design & Sustainable Ecosyst, Moscow, Russia
[22] Ctr Euro Mediterraneo Cambiamenti Climat, Impacts Agr Forests & Ecosyst Serv Div, Via Augusto Imperatore 16, I-73100 Lecce, Italy
[23] Ecole Polytech, Lab Meteorol Dynam, LMD IPSL, F-91120 Palaiseau, France
[24] Stockholm Univ, Dept Geol Sci, Svante Arrhenius Vag 8, S-10691 Stockholm, Sweden
[25] Stockholm Univ, Bolin Ctr Climate Res, Svante Arrhenius Vag 8, S-10691 Stockholm, Sweden
[26] Skidmore Coll, Environm Studies & Sci Program, Saratoga Springs, NY 12866 USA
[27] Univ Victoria, Pacific Climate Impacts Consortium, House 1,POB 1700 STN CSC, Victoria, BC V8W 2Y2, Canada
[28] Ist Nazl Geofis & Vulcanol, Sez Roma 2, Via V Murata 605, I-00143 Rome, Italy
[29] Babes Bolyai Univ, Fac Environm Sci & Engn, Cluj Napoca, Romania
[30] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
[31] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
[32] Met Off Hadley Ctr, Joint Ctr Hydrometeorol Res, Maclean Bldg, Wallingford OX10 8BB, Oxon, England
[33] Univ Reading, Dept Meteorol, Reading RG6 6BB, Berks, England
[34] Int Inst Appl Syst Anal IIASA, Air Qual & Greenhouse Gases Program AIR, A-2361 Laxenburg, Austria
[35] Stockholm Univ, Dept Phys Geog, S-10691 Stockholm, Sweden
[36] Natl Inst Environm Studies NIES, Ctr Global Environm Res, Onogawa 16-2, Tsukuba, Ibaraki 3058506, Japan
[37] CUNY City Coll, Dept Earth & Atmospher Sci, New York, NY 10031 USA
[38] Univ Bern, Phys Inst, Climate & Environm Phys, Sidlerstr 5, CH-3012 Bern, Switzerland
[39] Univ Bern, Oeschger Ctr Climate Change Res, Sidlerstr 5, CH-3012 Bern, Switzerland
[40] Max Planck Inst Meteorol, Bundesstr 53, D-20146 Hamburg, Germany
[41] CSIRO Oceans & Atmosphere, Climate Sci Ctr, Aspendale, Vic 3195, Australia
[42] Univ Libre Bruxelles, Dept Geosci Environm & Soc, B-1050 Brussels, Belgium
[43] Purdue Univ, Dept Earth, Dept Agron, W Lafayette, IN 47907 USA
[44] European Ctr Medium Range Weather Forecasts, Res Dept, Reading, Berks, England
[45] Lund Univ, Dept Phys Geog & Ecosyst Sci, Solvegatan 12, S-22362 Lund, Sweden
[46] Environm & Climate Change Canada, Climate Res Div, Victoria, BC V8W 2Y2, Canada
[47] Univ Bristol, Sch Geog Sci, Bristol BS8 1SS, Avon, England
[48] NOAA, Geophys Fluid Dynam Lab GFDL, Princeton, NJ 08540 USA
[49] Meteorol Res Inst MRI, Nagamine 1-1, Tsukuba, Ibaraki 3050052, Japan
[50] Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England
关键词
GREENHOUSE-GAS EMISSIONS; BIOMASS BURNING EMISSIONS; PROCESS-BASED MODEL; GOSAT SWIR XCO2; TM 4D-VAR V1.0; ATMOSPHERIC METHANE; NATURAL-GAS; CARBON-DIOXIDE; CH4; EMISSIONS; TRACE GASES;
D O I
10.5194/essd-12-1561-2020
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). For the 2008-2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr(-1) (range 550-594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr(-1) or similar to 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336-376 Tg CH4 yr(-1) or 50 %-65 %). The mean annual total emission for the new decade (2008-2017) is 29 Tg CH4 yr(-1) larger than our estimate for the previous decade (2000-2009), and 24 Tg CH4 yr(-1) larger than the one reported in the previous budget for 2003-2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr(-1), range 594-881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (similar to 65 % of the global budget, < 30 degrees N) compared to mid-latitudes (similar to 30 %, 30-60 degrees N) and high northern latitudes (similar to 4 %, 60-90 degrees N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters. Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr(-1) lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr(-1) by 8 Tg CH4 yr(-1), respectively. However, the overall discrepancy between bottomup and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning. The data presented here can be downloaded from https://doi.org/10.18160/GCP-CH4-2019 (Saunois et al., 2020) and from the Global Carbon Project.
引用
收藏
页码:1561 / 1623
页数:63
相关论文
共 400 条
  • [1] Abe Y., 2000, TERMITES EVOLUTION S
  • [2] Inverse modelling of CH4 emissions for 2010-2011 using different satellite retrieval products from GOSAT and SCIAMACHY
    Alexe, M.
    Bergamaschi, P.
    Segers, A.
    Detmers, R.
    Butz, A.
    Hasekamp, O.
    Guerlet, S.
    Parker, R.
    Boesch, H.
    Frankenberg, C.
    Scheepmaker, R. A.
    Dlugokencky, E.
    Sweeney, C.
    Wofsy, S. C.
    Kort, E. A.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (01) : 113 - 133
  • [3] Methane carbon isotope effects caused by atomic chlorine in the marine boundary layer: Global model results compared with Southern Hemisphere measurements
    Allan, W.
    Struthers, H.
    Lowe, D. C.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D4)
  • [4] Interannual variation of 13C in tropospheric methane:: Implications for a possible atomic chlorine sink in the marine boundary layer -: art. no. D11306
    Allan, W
    Lowe, DC
    Gomez, AJ
    Struthers, H
    Brailsford, GW
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D11) : 1 - 8
  • [5] Measurements of methane emissions at natural gas production sites in the United States
    Allen, David T.
    Torres, Vincent M.
    Thomas, James
    Sullivan, David W.
    Harrison, Matthew
    Hendler, Al
    Herndon, Scott C.
    Kolb, Charles E.
    Fraser, Matthew P.
    Hill, A. Daniel
    Lamb, Brian K.
    Miskimins, Jennifer
    Sawyer, Robert F.
    Seinfeld, John H.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (44) : 17768 - 17773
  • [6] Modeling methane emissions and methane inventories for cattle production systems in Mexico
    Alonso Castelan-Ortega, Octavio
    Carlos Ku-Vera, Juan
    Estrada-Flores, Julieta G.
    [J]. ATMOSFERA, 2014, 27 (02): : 185 - 191
  • [7] Assessment of methane emissions from the US oil and gas supply chain
    Alvarez, Ramon A.
    Zavala-Araiza, Daniel
    Lyon, David R.
    Allen, David T.
    Barkley, Zachary R.
    Brandt, Adam R.
    Davis, Kenneth J.
    Herndon, Scott C.
    Jacob, Daniel J.
    Karion, Anna
    Kort, Eric A.
    Lamb, Brian K.
    Lauvaux, Thomas
    Maasakkers, Joannes D.
    Marchese, Anthony J.
    Omara, Mark
    Pacala, Stephen W.
    Peischl, Jeff
    Robinson, Allen L.
    Shepson, Paul B.
    Sweeney, Colm
    Townsend-Small, Amy
    Wofsy, Steven C.
    Hamburg, Steven P.
    [J]. SCIENCE, 2018, 361 (6398) : 186 - 188
  • [8] A UAV-based active AirCore system for measurements of greenhouse gases
    Andersen, Truls
    Scheeren, Bert
    Peters, Wouter
    Chen, Huilin
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2018, 11 (05) : 2683 - 2699
  • [9] Andre J.-C., 2014, METHANE VIENT IL QUE
  • [10] [Anonymous], 2018, INTEGRATED NON CO2 O, DOI [10.18160/P7E9-EKEA, DOI 10.18160/P7E9-EKEA]