Uniqueness and Asymptotic Behavior of Positive Solutions for a Fractional-Order Integral Boundary Value Problem

被引:4
作者
Jia, Min [1 ]
Liu, Xin [1 ]
Gu, Xuemai [1 ]
机构
[1] Harbin Inst Technol, Commun Res Ctr, Harbin 150080, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
DIFFERENTIAL-EQUATION; EIGENVALUE PROBLEM; EXISTENCE;
D O I
10.1155/2012/294694
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a model arising from porous media, electromagnetic, and signal processing of wireless communication system -D(t)(alpha)x(t) = f(t, x(t), x'(t), x ''(t), ..., x((n-2))(t)), 0 < t < 1, x(0) = x'(0) = ... = x((n-2))(0) = 0, x((n-2))(1)= integral(1)(0)x((n-2))(s)dA(s), where n - 1 < alpha <= n, n is an element of N and n >= 2, D-t(alpha) is the standard Riemann-Liouville derivative, integral(1)(0)x(s)dA(s) is linear functionals given by Riemann-Stieltjes integrals, A is a function of bounded variation, and dA can be a changing-sign measure. The existence, uniqueness, and asymptotic behavior of positive solutions to the singular nonlocal integral boundary value problem for fractional differential equation are obtained. Our analysis relies on Schauder's fixed-point theorem and upper and lower solution method.
引用
收藏
页数:21
相关论文
共 23 条