Outlier Detection based on Transformations for Astronomical Time Series

被引:0
|
作者
Romero, Mauricio [1 ]
Estevez, Pablo A. [1 ]
机构
[1] Univ Chile, Dept Elect Engn, Santiago, Chile
来源
2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2022年
关键词
outlier detection; contrastive learning; transformations; time series; astronomy;
D O I
10.1109/IJCNN55064.2022.9892590
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work we propose an outlier detection method for astronomical light curves, based on time series transformations as temporal shift, masking, warping, etc. It is assumed that the outliers are unknown, and that we have access only to a set of inliers. A neural network encoder is used to learn a representation of a light curve minimizing the distance between objects of the same class and maximizing it otherwise. Each light curve is encoded as a single vector. An outlier score is computed based on the distance to the nearest class centroid. The model is applied to datasets from the Zwicky Transient Facility (ZTF), All Sky Automated Survey (ASAS) and Lincoln Near-Earth Asteroid Research (LINEAR) surveys. For model selection, surrogate metrics are estimated with the validation set. The metrics under test are the average hit ratio of the k-nearest neighbors of each light curve in the representation space, silhouette coefficient, Calinski-Harabasz index and Davies-Bouldin index. The results show that the proposed model outperforms state-of-the-art methods based on time series features and neural network approaches, reaching an average AUCPR of 0.89 for detecting outliers in the three datasets.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] ON OUTLIER DETECTION IN TIME-SERIES
    LJUNG, GM
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1993, 55 (02): : 559 - 567
  • [2] A Review on Outlier/Anomaly Detection in Time Series Data
    Blazquez-Garcia, Ane
    Conde, Angel
    Mori, Usue
    Lozano, Jose A.
    ACM COMPUTING SURVEYS, 2022, 54 (03)
  • [3] Time series outlier detection and imputation
    Akouemo, Hermine N.
    Povinelli, Richard J.
    2014 IEEE PES GENERAL MEETING - CONFERENCE & EXPOSITION, 2014,
  • [4] Outlier detection in time series data
    Choi, Jeong In
    Um, In Ok
    Cho, Hyung Jun
    KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (05) : 907 - 920
  • [5] Robust Time Series Dissimilarity Measure for Outlier Detection and Periodicity Detection
    Song, Xiaomin
    Wen, Qingsong
    Li, Yan
    Sun, Liang
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 4510 - 4514
  • [6] On-line outlier and change point detection for time series
    Su Wei-xing
    Zhu Yun-long
    Liu Fang
    Hu Kun-yuan
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2013, 20 (01) : 114 - 122
  • [7] A novel symbolization technique for time-series outlier detection
    Smith, Gavin
    Goulding, James
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2015, : 2428 - 2436
  • [8] On-line outlier and change point detection for time series
    Wei-xing Su
    Yun-long Zhu
    Fang Liu
    Kun-yuan Hu
    Journal of Central South University, 2013, 20 : 114 - 122
  • [9] On-line outlier and change point detection for time series
    苏卫星
    朱云龙
    刘芳
    胡琨元
    JournalofCentralSouthUniversity, 2013, 20 (01) : 114 - 122
  • [10] Detection of outlier patches in autoregressive time series
    Justel, A
    Peña, D
    Tsay, RS
    STATISTICA SINICA, 2001, 11 (03) : 651 - 673