Motif D of Viral RNA-Dependent RNA Polymerases Determines Efficiency and Fidelity of Nucleotide Addition

被引:70
|
作者
Yang, Xiaorong [1 ]
Smidansky, Eric D. [2 ]
Maksimchuk, Kenneth R. [2 ]
Lum, David [1 ]
Welch, Jesse L. [1 ]
Arnold, Jamie J. [2 ]
Cameron, Craig E. [2 ]
Boehr, David D. [1 ]
机构
[1] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA
基金
美国国家卫生研究院;
关键词
HIV-1; REVERSE-TRANSCRIPTASE; DNA-POLYMERASE; STRUCTURAL BASIS; O-HELIX; ACTIVE-SITE; REPLICATION FIDELITY; POLIOVIRUS; MECHANISM; CRYSTAL; SPECIFICITY;
D O I
10.1016/j.str.2012.06.012
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fast, accurate nucleotide incorporation by polymerases facilitates expression and maintenance of genomes. Many polymerases use conformational dynamics of a conserved a helix to permit efficient nucleotide addition only when the correct nucleotide substrate is bound. This a helix is missing in structures of RNA-dependent RNA polymerases (RdRps) and RTs. Here, we use solution-state nuclear magnetic resonance to demonstrate that the conformation of conserved structural motif D of an RdRp is linked to the nature (correct versus incorrect) of the bound nucleotide and the protonation state of a conserved, motif-D lysine. Structural data also reveal the inability of motif D to achieve its optimal conformation after incorporation of an incorrect nucleotide. Functional data are consistent with the conformational change of motif D becoming rate limiting during and after nucleotide misincorporation. We conclude that motif D of RdRps and, by inference, RTs is the functional equivalent to the fidelity helix of other polymerases.
引用
收藏
页码:1519 / 1527
页数:9
相关论文
共 50 条
  • [21] A unique intra-molecular fidelity-modulating mechanism identified in a viral RNA-dependent RNA polymerase
    Liu, Weichi
    Shi, Xiaoling
    Gong, Peng
    NUCLEIC ACIDS RESEARCH, 2018, 46 (20) : 10840 - 10854
  • [22] RNA-dependent RNA polymerases from flaviviruses and Picornaviridae
    Lescar, Julien
    Canard, Bruno
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2009, 19 (06) : 759 - 767
  • [23] Evidence for a Non-Catalytic Ion-Binding Site in Multiple RNA-Dependent RNA Polymerases
    Monttinen, Heli A. M.
    Ravantti, Janne J.
    Poranen, Minna M.
    PLOS ONE, 2012, 7 (07):
  • [24] A Structural Overview of RNA-Dependent RNA Polymerases from the Flaviviridae Family
    Wu, Jiqin
    Liu, Weichi
    Gong, Peng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2015, 16 (06): : 12943 - 12957
  • [25] RNA-Dependent RNA Polymerases of Picornaviruses: From the Structure to Regulatory Mechanisms
    Ferrer-Orta, Cristina
    Ferrero, Diego
    Verdaguer, Nuria
    VIRUSES-BASEL, 2015, 7 (08): : 4438 - 4460
  • [26] Fluorescent primer-based in vitro transcription system of viral RNA-dependent RNA polymerases
    Wang, Qiang
    Weng, Leiyun
    Jiang, Hongbing
    Zhang, Shijian
    Toyoda, Tetsuya
    ANALYTICAL BIOCHEMISTRY, 2013, 433 (02) : 92 - 94
  • [27] Structural basis of viral RNA-dependent RNA polymerase catalysis and translocation
    Shu, Bo
    Gong, Peng
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (28) : E4005 - E4014
  • [28] Inhibition of Viral RNA-Dependent RNA Polymerases by Nucleoside Inhibitors: An Illustration of the Unity and Diversity of Mechanisms
    Barik, Sailen
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (20)
  • [29] Rational Control of Poliovirus RNA-Dependent RNA Polymerase Fidelity by Modulating Motif-D Loop Conformational Dynamics
    Shi, Jingjing
    Perryman, Jacob M.
    Yang, Xiaorong
    Liu, Xinran
    Musser, Derek M.
    Boehr, Alyson K.
    Moustafa, Ibrahim M.
    Arnold, Jamie J.
    Cameron, Craig E.
    Boehr, David D.
    BIOCHEMISTRY, 2019, 58 (36) : 3735 - 3743
  • [30] Evolution of Tertiary Structure of Viral RNA Dependent Polymerases
    Cerny, Jiri
    Bolfikova, Barbora Cerna
    Valdes, James J.
    Grubhoffer, Libor
    Ruzek, Daniel
    PLOS ONE, 2014, 9 (05):