Stochastic quantization at finite chemical potential

被引:103
作者
Aarts, Gert [1 ]
Stamatescu, Ion-Olimpiu [2 ,3 ]
机构
[1] Swansea Univ, Dept Phys, Swansea, W Glam, Wales
[2] Heidelberg Univ, Inst Theoret Phys, D-6900 Heidelberg, Germany
[3] FEST, Heidelberg, Germany
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2008年 / 09期
关键词
lattice QCD; lattice quantum field theory;
D O I
10.1088/1126-6708/2008/09/018
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A nonperturbative lattice study of QCD at finite chemical potential is complicated due to the complex fermion determinant and the sign problem. Here we apply the method of stochastic quantization and complex Langevin dynamics to this problem. We present results for U(1) and SU(3) one link models and QCD at finite chemical potential using the hopping expansion. The phase of the determinant is studied in detail. Even in the region where the sign problem is severe, we find excellent agreement between the Langevin results and exact expressions, if available. We give a partial understanding of this in terms of classical flow diagrams and eigenvalues of the Fokker-Planck equation.
引用
收藏
页数:34
相关论文
共 41 条
  • [1] 1/M correction to quenched QCD with non-zero baryon density
    Aarts, G
    Kaczmarek, O
    Karsch, F
    Stamatescu, IO
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 : 456 - 458
  • [2] Abramowitz M, 1972, HDB MATH FUNCTIONS F, P17
  • [3] Thermodynamics of two flavor QCD to sixth order in quark chemical potential -: art. no. 054508
    Allton, CR
    Döring, M
    Ejiri, S
    Hands, SJ
    Kaczmarek, O
    Karsch, F
    Laermann, E
    Redlich, K
    [J]. PHYSICAL REVIEW D, 2005, 71 (05): : 1 - 20
  • [4] Equation of state for two flavor QCD at nonzero chemical potential
    Allton, CR
    Ejiri, S
    Hands, SJ
    Kaczmarek, O
    Karsch, F
    Laermann, E
    Schmidt, C
    [J]. PHYSICAL REVIEW D, 2003, 68 (01)
  • [5] QCD thermal phase transition in the presence of a small chemical potential
    Allton, CR
    Ejiri, S
    Hands, SJ
    Kaczmarek, O
    Karsch, F
    Laermann, E
    Schmidt, C
    Scorzato, L
    [J]. PHYSICAL REVIEW D, 2002, 66 (07):
  • [6] THE COMPLEX LANGEVIN EQUATION AND MONTE-CARLO SIMULATIONS OF ACTIONS WITH STATIC CHARGES
    AMBJORN, J
    FLENSBURG, M
    PETERSON, C
    [J]. NUCLEAR PHYSICS B, 1986, 275 (03) : 375 - 397
  • [7] Bender I., 1992, Nuclear Physics B, Proceedings Supplements, V26B, P323, DOI 10.1016/0920-5632(92)90265-T
  • [8] Simulating nonequilibrium quantum fields with stochastic quantization techniques
    Berges, J
    Stamatescu, IO
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (20)
  • [9] Lattice simulations of real-time quantum fields
    Berges, J.
    Borsanyi, Sz.
    Sexty, D.
    Stamatescu, I. -O.
    [J]. PHYSICAL REVIEW D, 2007, 75 (04):
  • [10] Real-time gauge theory simulations from stochastic quantization with optimized updating
    Berges, Jueren
    Sexty, Denes
    [J]. NUCLEAR PHYSICS B, 2008, 799 (03) : 306 - 329