Spectral Direction Splitting Schemes for the Incompressible Navier-Stokes Equations

被引:8
作者
Chen, Lizhen [1 ]
Shen, Jie [1 ,2 ]
Xu, Chuanju [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Navier-Stokes equations; projection method; direction splitting; spectral methods;
D O I
10.4208/eajam.190411.240511a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and analyze spectral direction splitting schemes for the incompressible Navier-Stokes equations. The schemes combine a Legendre-spectral method for the spatial discretization and a pressure-stabilization/direction splitting scheme for. the temporal discretization, leading to a sequence of one-dimensional elliptic equations at each time step while preserving the same order of accuracy as the usual pressurestabilization schemes. We prove that these schemes are unconditionally stable, and present numerical results which demonstrate the stability accuracy, and efficiency of the proposed methods.
引用
收藏
页码:215 / 234
页数:20
相关论文
共 11 条
[1]  
Bernardi C., 1992, Approximations spectrales de problemes aux limites elliptiques
[2]   NUMERICAL SOLUTION OF NAVIER-STOKES EQUATIONS [J].
CHORIN, AJ .
MATHEMATICS OF COMPUTATION, 1968, 22 (104) :745-&
[3]   An overview of projection methods for incompressible flows [J].
Guermond, J. L. ;
Minev, P. ;
Shen, Jie .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (44-47) :6011-6045
[4]  
Guermond J.L., 2011, PREPRINT
[5]   A new class of fractional step techniques for the incompressible Navier-Stokes equations using direction splitting [J].
Guermond, Jean-Luc ;
Minev, Peter D. .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (9-10) :581-585
[6]  
Guermond JL, 2004, MATH COMPUT, V73, P1719
[7]   THE NUMERICAL SOLUTION OF PARABOLIC AND ELLIPTIC DIFFERENTIAL EQUATIONS [J].
PEACEMAN, DW ;
RACHFORD, HH .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1955, 3 (01) :28-41
[8]   On error estimates of the projection methods for the Navier-Stokes equations: Second-order schemes [J].
Shen, J .
MATHEMATICS OF COMPUTATION, 1996, 65 (215) :1039-1065
[9]  
TEMAM R, 1969, ARCH RATION MECH AN, V32, P135
[10]  
Timmermans LJP, 1996, INT J NUMER METH FL, V22, P673, DOI 10.1002/(SICI)1097-0363(19960415)22:7<673::AID-FLD373>3.0.CO