Change Detection in UWB SAR Images Based on Robust Principal Component Analysis

被引:19
作者
Schwartz, Christofer [1 ]
Ramos, Lucas P. [1 ]
Duarte, Leonardo T. [2 ]
Pinho, Marcelo da S. [1 ]
Pettersson, Mats I. [3 ]
Vu, Viet T. [3 ]
Machado, Renato [1 ]
机构
[1] Aeronaut Inst Technol ITA, BR-12228900 Sao Jose Dos Campos, SP, Brazil
[2] Univ Campinas UNICAMP, Sch Appl Sci FCA, BR-13484350 Limeira, SP, Brazil
[3] Blekinge Inst Technol BTH, S-37179 Karlskrona, Sweden
关键词
synthetic aperture radar; CARABAS-II; RPCA; change detection; blind source separation; SYSTEM; RADAR; RPCA;
D O I
10.3390/rs12121916
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper addresses the use of a data analysis tool, known as robust principal component analysis (RPCA), in the context of change detection (CD) in ultrawideband (UWB) very high-frequency (VHF) synthetic aperture radar (SAR) images. The method considers image pairs of the same scene acquired at different time instants. The CD method aims to maximize the probability of detection (PD) and minimize the false alarm rate (FAR). Such aim fits into a multiobjective optimization problem, since maximizing the probability of detection generally implies an increase in the number of false alarms. In that sense, varying the RPCA regularization parameter leads to PD variation with respect to FAR, which is known as receiver operating characteristic (ROC) curve. To evaluate the proposed method, the CARABAS-II data set was considered. The experimental results show that RPCA via principal component pursuit (PCP) can provide a good trade-off between PD and FAR. A comparison between the results obtained with the proposed method and a classical CD algorithm based on the likelihood ratio test provides the pros and cons of the proposed method.
引用
收藏
页数:11
相关论文
共 24 条
[1]  
[Anonymous], FOUND TRENDS MACH LE
[2]   Multi-Snapshot Spectrum Sensing for Cognitive Radar via Block-Sparsity Exploitation [J].
Aubry, Augusto ;
Carotenuto, Vincenzo ;
De Maio, Antonio ;
Govoni, Mark A. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (06) :1396-1406
[3]   Synthetic Aperture Radar Imaging and Motion Estimation via Robust Principal Component Analysis [J].
Borcea, Liliana ;
Callaghan, Thomas ;
Papanicolaou, George .
SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (03) :1445-1476
[4]   Robust PCA via Principal Component Pursuit: A review for a comparative evaluation in video surveillance [J].
Bouwmans, Thierry ;
Zahzah, El Hadi .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2014, 122 :22-34
[5]   Robust Principal Component Analysis? [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Ma, Yi ;
Wright, John .
JOURNAL OF THE ACM, 2011, 58 (03)
[6]  
Comon P., 2010, HDB BLIND SOURCE SEP, DOI [10.1016/C2009-0-19334-0, DOI 10.1016/C2009-0-19334-0]
[7]  
Duarte LT, 2012, EUR SIGNAL PR CONF, P1494
[8]   GMTI and Parameter Estimation for MIMO SAR System via Fast Interferometry RPCA Method [J].
Huang, Yan ;
Liao, Guisheng ;
Xu, Jingwei ;
Li, Jie ;
Yang, Dong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (03) :1774-1787
[9]  
Klemm R., 2006, PRINCIPLES SPACE TIM, V3
[10]  
Laptev D., ROBUST PCA