Near-field Terahertz Sensing of HeLa Cells and Pseudomonas Based on Monolithic Integrated Metamaterials with a Spintronic Terahertz Emitter

被引:61
作者
Bai, Zhongyang [1 ,2 ]
Liu, Yongshan [1 ,2 ]
Kong, Ruru [1 ,5 ]
Nie, Tianxiao [1 ,2 ]
Sun, Yun [1 ,5 ]
Li, Helin [1 ,2 ]
Sun, Tong [1 ,2 ]
Pandey, Chandan [1 ,2 ]
Wang, Yining [1 ]
Zhang, Haoyi [1 ]
Song, Qinglin [1 ,2 ]
Liu, Guozhen [6 ]
Kraft, Michael [7 ]
Zhao, Weisheng [1 ,2 ]
Wu, Xiaojun [3 ,4 ]
Wen, Lianggong [1 ,2 ]
机构
[1] Beihang Univ, Sch Microelect, Beijing 100191, Peoples R China
[2] Beihang Univ, Beihang Goertek Joint Microelect Inst, Qingdao Res Inst, Qingdao 266000, Peoples R China
[3] Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China
[4] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[5] Beihang Univ, Hefei Innovat Res Inst, Beijing 100191, Peoples R China
[6] Univ New South Wales, Fac Engn, ARC Ctr Excellence Nanoscale BioPhoton CNBP, Grad Sch Biomed Engn, Sydney, NSW 2052, Australia
[7] Katholieke Univ Leuven, ESAT MICAS, B-3001 Leuven, Belgium
基金
中国国家自然科学基金; 国家重点研发计划; 澳大利亚研究理事会;
关键词
near-field biosensing; electromagnetically induced transparency analogue; metamaterials; spintronic terahertz emitter; monolithic integration; BIOSENSORS;
D O I
10.1021/acsami.0c08543
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Label-free biosensors operating within the terahertz (THz) spectra have helped to unlock a myriad of potential THz applications, ranging from biomaterial detection to point-of-care diagnostics. However, the THz wave diffraction limit and the lack of emitter-integrated THz biosensors hinder the proliferation of high-resolution near-field label-free THz biosensing. Here, a monolithic THz emission biosensor (TEB) is achieved for the first time by integrating asymmetric double-split ring resonator metamaterials with a ferromagnetic heterojunction spintronic THz emitter. This device exhibits an electromagnetically induced transparency window with a resonance frequency of 1.02 THz and a spintronic THz radiation source with a bandwidth of 900 GHz, which are integrated on a fused silica substrate monolithically for the first time. It was observed that the resonance frequency experienced a red-shift behavior with increasing concentration of HeLa cells and Pseudomonas because of the strong interaction between the spintronic THz radiation and the biological samples on the metamaterials. The spatial frequency red-shift resolution is similar to 0.01 THz with a Pseudomonas concentration increase from similar to 0.5 x 10(4) to similar to 1 x 10(4)/mL. The monolithic THz biosensor is also sensitive to the sample concentration distribution with a 15.68 sensitivity under a spatial resolution of 500 mu m, which is determined by the infrared pump light diffraction limit. This TEB shows great potential for high-resolution near-field biosensing applications of trace biological samples.
引用
收藏
页码:35895 / 35902
页数:8
相关论文
共 23 条
[1]   Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings [J].
Ahmadivand, Arash ;
Gerislioglu, Burak ;
Ahuja, Rajeev ;
Mishra, Yogendra Kumar .
MATERIALS TODAY, 2020, 32 :108-130
[2]   Review of terahertz photoconductive antenna technology [J].
Burford, Nathan M. ;
El-Shenawee, Magda O. .
OPTICAL ENGINEERING, 2017, 56 (01)
[3]   Generation and manipulation of chiral broadband terahertz waves from cascade spintronic terahertz emitters [J].
Chen, Xinhou ;
Wu, Xiaojun ;
Shan, Shengyu ;
Guo, Fengwei ;
Kong, Deyin ;
Wang, Chun ;
Nie, Tianxiao ;
Pandey, Chandan ;
Wen, Lianggong ;
Zhao, Weisheng ;
Ruan, Cunjun ;
Miao, Jungang ;
Li, Yutong ;
Wang, Li .
APPLIED PHYSICS LETTERS, 2019, 115 (22)
[4]   Dual-band ultrasensitive THz sensing utilizing high quality Fano and quadrupole resonances in metamaterials [J].
Ding, Chunfeng ;
Jiang, Linkun ;
Wu, Liang ;
Gao, Runmei ;
Xu, Degang ;
Zhang, Guizhong ;
Yao, Jianquan .
OPTICS COMMUNICATIONS, 2015, 350 :103-107
[5]  
Gabriel C, 1996, COMPILATION DIELECTR, DOI DOI 10.21236/ADA303903
[6]   Terahertz Sensing with Optimized Q/Veff Metasurface Cavities [J].
Gupta, Manoj ;
Singh, Ranjan .
ADVANCED OPTICAL MATERIALS, 2020, 8 (16)
[7]  
Kampfrath T, 2013, NAT NANOTECHNOL, V8, P256, DOI [10.1038/nnano.2013.43, 10.1038/NNANO.2013.43]
[8]   Broadband Spintronic Terahertz Emitter with Magnetic-Field Manipulated Polarizations [J].
Kong, Deyin ;
Wu, Xiaojun ;
Wang, Bo ;
Nie, Tianxiao ;
Xiao, Meng ;
Pandey, Chandan ;
Gao, Yang ;
Wen, Lianggong ;
Zhao, Weisheng ;
Ruan, Cunjun ;
Miao, Jungang ;
Li, Yutong ;
Wang, Li .
ADVANCED OPTICAL MATERIALS, 2019, 7 (20)
[9]   Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations [J].
O'Hara, John F. ;
Singh, Ranjan ;
Brener, Igal ;
Smirnova, Evgenya ;
Han, Jiaguang ;
Taylor, Antoinette J. ;
Zhang, Weili .
OPTICS EXPRESS, 2008, 16 (03) :1786-1795
[10]   Sensing viruses using terahertz nano-gap metamaterials [J].
Park, S. J. ;
Cha, S. H. ;
Shin, G. A. ;
Ahn, Y. H. .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (08) :3551-3558