Quasi-selective ultrafilters and asymptotic numerosities

被引:10
作者
Blass, Andreas [1 ]
Di Nasso, Mauro [2 ]
Forti, Marco [3 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Pisa, Dipart Matemat L Tonelli, I-56100 Pisa, Italy
[3] Univ Pisa, Dipart Matemat Applicata U Dini, I-56100 Pisa, Italy
关键词
Ultrafilter; Non-standard model; Numerosity; Semiring; SETS;
D O I
10.1016/j.aim.2012.06.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We isolate a new class of ultrafilters on N, called "quasi-selective" because they are intermediate between selective ultrafilters and P-points. (Under the Continuum Hypothesis these three classes are distinct.) The existence of quasi-selective ultrafilters is equivalent to the existence of "asymptotic numerosities" for tinsels of tuples A subset of N-k. Such numerosities are hypernatural numbers that generalize finite carclinalities to countable point sets. Most notably, they maintain the structure of ordered semiring, and, in a precise sense, they allow for a natural extension of asymptotic density to all sets of tuples of natural numbers. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1462 / 1486
页数:25
相关论文
共 17 条
[1]   Numerosities of labelled sets: a new way of counting [J].
Benci, V ;
Di Nasso, M .
ADVANCES IN MATHEMATICS, 2003, 173 (01) :50-67
[2]  
Benci V, 2007, LOG ANAL, P43
[3]   An Aristotelian notion of size [J].
Benci, Vieri ;
Di Nasso, Mauro ;
Forti, Marco .
ANNALS OF PURE AND APPLIED LOGIC, 2006, 143 (1-3) :43-53
[4]  
BLASS A, 1974, T AM MATH SOC, V188, P327
[5]  
Blass A., 2010, Handbook of Set Theory. Vols. 1, 2, P395, DOI [10.1007/978-1-4020-5764-9_7, 10.1007/978-1-4020-5764-97, DOI 10.1007/978-1-4020-5764-97, DOI 10.1007/978-1-4020-5764-9_7]
[6]  
Booth D., 1970, ANN MATH LOGIC, V2, P1
[7]  
Chang C.C., 1990, Model Theory, Vthird
[8]  
CHOQUET G, 1968, B SCI MATH, V92, P41
[9]  
CHOQUET G, 1968, B SCI MATH, V92, P143
[10]   NUMEROSITIES OF POINT SETS OVER THE REAL LINE [J].
Di Nasso, Mauro ;
Forti, Marco .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (10) :5355-5371