Predicting Vehicles' Positions using Roadside Units: a Machine-Learning Approach

被引:0
|
作者
Sangare, Mamoudou [1 ]
Banerjee, Soumya [3 ]
Muhlethaler, Paul [1 ]
Bouzefrane, Samia [2 ]
机构
[1] INRIA EVA, Ctr Rech Paris, 2 Rue Simone,IFF CS 42112, F-75589 Paris 12, France
[2] CNAM, CEDRIC Lab, 292 Rue St Martin, F-75003 Paris, France
[3] Birla Inst Technol, Dept Comp Sci & Engeneering, Mesra, India
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study positioning systems using Vehicular Ad Hoc Networks (VANETs) to predict the position of vehicles. We use the reception power of the packets received by the Road Side Units (RSUs) and sent by the vehicles on the roads. In fact, the reception power is strongly influenced by the distance between a vehicle and a RSU. To predict the position of vehicles in this context, we adopt the machine-learning methodology. As a pre-requisite, the vehicles know their positions and the vehicles send their positions in the packets. The positioning system can thus perform a training sequence and build a model. The system is then able to handle a prediction request. In this request, a vehicle without external positioning will request its position from the neighboring RSUs. The RSUs which receive this request message from the vehicle will know the power at which the message was received and will study the positioning request using the training set. In this study, we use and compare three widely recognized techniques : K Nearest Neighbors (KNN), Support Vector Machine (SVM) and Random Forest. We study these techniques in various configurations and discuss their respective advantages and drawbacks. Our results show that these three techniques provide very good results in terms of position predictions when the error on the transmission power is small.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Predicting Perovskite Performance with Multiple Machine-Learning Algorithms
    Li, Ruoyu
    Deng, Qin
    Tian, Dong
    Zhu, Daoye
    Lin, Bin
    CRYSTALS, 2021, 11 (07)
  • [42] An evaluation of machine-learning methods for predicting pneumonia mortality
    Cooper, GF
    Aliferis, CF
    Ambrosino, R
    Aronis, J
    Buchanan, BG
    Caruana, R
    Fine, MJ
    Glymour, C
    Gordon, G
    Hanusa, BH
    Janosky, JE
    Meek, C
    Mitchell, T
    Richardson, T
    Spirtes, P
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 1997, 9 (02) : 107 - 138
  • [43] Applicability of Machine-Learning Techniques in Predicting Customer Defection
    Prasasti, Niken
    Ohwada, Hayato
    2014 1ST INTERNATIONAL SYMPOSIUM ON TECHNOLOGY MANAGEMENT AND EMERGING TECHNOLOGIES (ISTMET 2014), 2014, : 157 - 162
  • [44] Predicting loss aversion behavior with machine-learning methods
    Ömür Saltık
    Wasim ul Rehman
    Rıdvan Söyü
    Süleyman Değirmen
    Ahmet Şengönül
    Humanities and Social Sciences Communications, 10
  • [45] Predicting loss aversion behavior with machine-learning methods
    Saltik, Omur
    ul Rehman, Wasim
    Soyu, Ridvan
    Degirmen, Suleyman
    Sengonul, Ahmet
    HUMANITIES & SOCIAL SCIENCES COMMUNICATIONS, 2023, 10 (01):
  • [46] Predicting the success of startups using a machine learning approach
    Mona Razaghzadeh Bidgoli
    Iman Raeesi Vanani
    Mehdi Goodarzi
    Journal of Innovation and Entrepreneurship, 13 (1)
  • [47] Detection of Colchicum autumnale in drone images, using a machine-learning approach
    Lukas Petrich
    Georg Lohrmann
    Matthias Neumann
    Fabio Martin
    Andreas Frey
    Albert Stoll
    Volker Schmidt
    Precision Agriculture, 2020, 21 : 1291 - 1303
  • [48] Prediction of bacterial associations with plants using a supervised machine-learning approach
    Manuel Martinez-Garcia, Pedro
    Lopez-Solanilla, Emilia
    Ramos, Cayo
    Rodriguez-Palenzuela, Pablo
    ENVIRONMENTAL MICROBIOLOGY, 2016, 18 (12) : 4847 - 4861
  • [49] An Efficient Approach to Recognize Hand Gestures Using Machine-Learning Algorithms
    Wahid, Md Ferdous
    Tafreshi, Reza
    Al-Sowaidi, Mubarak
    Langari, Reza
    2018 IEEE 4TH MIDDLE EAST CONFERENCE ON BIOMEDICAL ENGINEERING (MECBME), 2018, : 171 - 176
  • [50] Detection of Colchicum autumnale in drone images, using a machine-learning approach
    Petrich, Lukas
    Lohrmann, Georg
    Neumann, Matthias
    Martin, Fabio
    Frey, Andreas
    Stoll, Albert
    Schmidt, Volker
    PRECISION AGRICULTURE, 2020, 21 (06) : 1291 - 1303