DROUGHT TOLERANCE INDICES OF SELECTED LANDRACES AND BREAD WHEAT (TRITICUM AESTIVUM L.) GENOTYPES DERIVED FROM SYNTHETIC WHEATS

被引:10
|
作者
Aktas, H. [1 ]
机构
[1] Mardin Artuklu Univ, Vocat Sch Kiziltepe, Mardin, Turkey
来源
关键词
abiotic stress; grain yield; spad; grain number; Triticum aestivum L; correlation; biplot; STRESS TOLERANCE; YIELD; TRAITS; HEAT;
D O I
10.15666/aeer/1404_177189
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The present study was performed to determine performance of selected four synthetic derived bread wheat genotypes, four bread wheat landraces and four modern wheat genotypes under rain-fed and supplemented irrigation experiments based on randomized complete block design with four replications at GAP International Agricultural Research and Training Center, Diyarbakir, Turkey in 2013-2014 and 2014-2015 growing seasons. According to results of pairwise correlation and biplot analysis, significant and positive correlation was observed between grain yield in stress condition (Ys) and stress tolerant index (STI), geometric mean productivity (GMP), mean productivity (MP), harmonic productivity (HM), yield stability index (YSI), yield index (YI), drought resistance index (DI) and stress non-stress production index (SNPI) indicating these indices can be used as parameters for evaluating drought tolerant genotypes. Negative correlation between grain yield in stress (Ys) with SSI and no correlation with TOL indicated that these indices should be used in severe drought conditions for screening genotypes. Number seed in spike (NSS), plant height (PH) and thousand kernel weight (TKW) correlated with grain yield in stress conditions (Ys) according to biplot analysis, also genotypes with lower reduction relating to these traits had higher yield in stress conditions. According to results SEN-DER genotypes G7, G10, landrace group genotype G11 (Sorik) were determined as the most tolerant genotypes to be used to improve drought tolerant varieties, while modern wheat genotypes G4 (Ceyhan-99) and G2 (Tekin) were high productive in irrigation conditions and low productive in rain-fed conditions.
引用
收藏
页码:177 / 189
页数:13
相关论文
共 50 条
  • [31] Genetic Dissection of Drought Tolerance of Elite Bread Wheat (Triticum aestivum L.) Genotypes Using Genome Wide Association Study in Morocco
    El Gataa, Zakaria
    Samir, Karima
    Tadesse, Wuletaw
    PLANTS-BASEL, 2022, 11 (20):
  • [32] Genetic diversity analysis of Azerbaijani bread wheat (Triticum aestivum L.) genotypes with simple sequence repeat markers linked to drought tolerance
    Mammadova, Ruhangiz
    Akparov, Zeynal
    Amri, Ahmad
    Bakhsh, Allah
    Alo, Fida
    Alizade, Shader
    Amrahov, Nurlan
    Yunisova, Firuza
    GENETIC RESOURCES AND CROP EVOLUTION, 2025, 72 (01) : 315 - 323
  • [33] Heat tolerance indicators in Pakistani wheat (Triticum aestivum L.) genotypes
    Khan, Sami U.
    Din, Jalal U.
    Qayyum, Abdul
    Jan, Noor E.
    Jenks, Matthew A.
    ACTA BOTANICA CROATICA, 2015, 74 (01) : 109 - 121
  • [34] Screening drought-tolerant genotypes in bread wheat (Triticum aestivum L.) using different multivariate methods
    Abdolshahi, Roohollah
    Safarian, Abdorahim
    Nazari, Maryam
    Pourseyedi, Shahram
    Mohamadi-Nejad, Ghasem
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2013, 59 (05) : 685 - 704
  • [35] Molecular and Physiological Evaluation of Bread Wheat (Triticum aestivum L.) Genotypes for Stay Green under Drought Stress
    Zada, Ahmad
    Ali, Ahmad
    Binjawhar, Dalal Nasser
    Abdel-Hameed, Usama K.
    Shah, Azhar Hussain
    Gill, Shahid Maqsood
    Hussain, Irtiza
    Abbas, Zaigham
    Ullah, Zahid
    Sher, Hassan
    Ali, Iftikhar
    GENES, 2022, 13 (12)
  • [36] Screening of bread wheat (Triticum aestivum L.) genotypes under drought stress conditions using multivariate analysis
    M. Arifuzzaman
    S. Barman
    S. Hayder
    M. A. K. Azad
    M. T. S. Turin
    M. A. Amzad
    M. S. Masuda
    Cereal Research Communications, 2020, 48 : 301 - 308
  • [37] Phenotypic diversity and trait association in bread wheat (Triticum aestivum L.) landraces from Baluchistan, Pakistan
    Masood, MS
    Javaid, A
    Rabbani, MA
    Anwar, R
    PAKISTAN JOURNAL OF BOTANY, 2005, 37 (04) : 949 - 957
  • [38] Screening of bread wheat (Triticum aestivum L.) genotypes under drought stress conditions using multivariate analysis
    Arifuzzaman, M.
    Barman, S.
    Hayder, S.
    Azad, M. A. K.
    Turin, M. T. S.
    Amzad, M. A.
    Masuda, M. S.
    CEREAL RESEARCH COMMUNICATIONS, 2020, 48 (03) : 301 - 308
  • [39] Characterization of winter wheat (Triticum aestivum L.) germplasm for drought tolerance
    Kanbar, Osama Zuhair
    Chege, Paul
    Lantos, Csaba
    Kiss, Erzsebet
    Pauk, Janos
    PLANT GENETIC RESOURCES-CHARACTERIZATION AND UTILIZATION, 2020, 18 (05): : 369 - 381
  • [40] Worldwide Selection Footprints for Drought and Heat in Bread Wheat (Triticum aestivum L.)
    Gomez-Espejo, Ana L.
    Paola Sansaloni, Carolina
    Burgueno, Juan
    Toledo, Fernando H.
    Benavides-Mendoza, Adalberto
    Humberto Reyes-Valdes, M.
    PLANTS-BASEL, 2022, 11 (17):