C3N/phosphorene heterostructure: a promising anode material in lithium-ion batteries

被引:98
|
作者
Guo, Gen-Cai [1 ,2 ]
Wang, Ru-Zhi [1 ,2 ]
Ming, Bang-Ming [1 ,2 ]
Wang, Changhao [1 ,2 ]
Luo, Si-Wei [1 ,2 ]
Zhang, Ming [1 ,2 ]
Yan, Hui [1 ,2 ]
机构
[1] Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
[2] Beijing Univ Technol, Educ Minist China, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; AB-INITIO; LI; MONOLAYER; PHOSPHORENE; DIFFUSION; SEMICONDUCTORS; ADSORPTION; CHALLENGES; GRAPHITE;
D O I
10.1039/c8ta10972a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
C3N has attracted much attention as an anode material for lithium-ion (Li-ion) batteries, owing to its excellent mechanical and electronic properties. However, its weak Li adsorption strength and mobility have limited its further application. Phosphorene (P) exhibits a high bonding strength with Li and excellent Li-ion mobility, but low stiffness. Thus, we propose that constructing a C3N/P hybrid material will not only negate the deficiency of C3N but also result in a new high performance electrode material. A C3N/P heterostructure is constructed and studied by first-principles calculations. This heterostructure exhibits an excellent stiffness (Young's modulus is 448.32 N m(-1)), which is even better than that of graphene. The bonding strength of Li inserted into the intralayer of the C3N/P heterostructure (1.78-2.02 eV) is much higher than that in pristine monolayer C3N (0.32 eV) and phosphorene (1.67 eV). Moreover, the C3N/P heterostructure shows a high capacity of 468.34 mA h g(-1), and better conductivities of electricity and ions than pristine monolayer C3N. The excellent mechanical properties, high capacity, good conductivities of electrons and ions and moderately high bonding energy indicate that the C3N/P heterostructure is a promising anode material for lithium-ion batteries.
引用
收藏
页码:2106 / 2113
页数:8
相关论文
共 50 条
  • [11] The prospects of phosphorene as an anode material for high-performance lithium-ion batteries: a fundamental study
    Zhang, Congyan
    Yu, Ming
    Anderson, George
    Dharmasena, Ruchira Ravinath
    Sumanasekera, Gamini
    NANOTECHNOLOGY, 2017, 28 (07)
  • [12] First-principles study of borophene/phosphorene heterojunction as anode material for lithium-ion batteries
    Yang, Zhifang
    Li, Wenliang
    Zhang, Jingping
    NANOTECHNOLOGY, 2022, 33 (07)
  • [13] Silicene: A Promising Anode for Lithium-Ion Batteries
    Zhuang, Jincheng
    Xu, Xun
    Peleckis, Germanas
    Hao, Weichang
    Dou, Shi Xue
    Du, Yi
    ADVANCED MATERIALS, 2017, 29 (48)
  • [14] 2D Ca 2 N/silicene donor-acceptor heterostructure with interstitial anionic electrons as anode material for lithium-ion batteries
    Jiang, Xiaowei
    Tang, Wenjun
    Niu, Xiaobin
    Chen, Haiyuan
    MATERIALS TODAY COMMUNICATIONS, 2024, 39
  • [15] First-principles study of C3N nanoribbons as anode materials for Li-ion batteries
    Guo, Gencai
    Wang, Changhao
    Luo, Siwei
    Ming, Bangming
    Wang, Bingrong
    Wang, Ruzhi
    PHYSICS LETTERS A, 2020, 384 (28)
  • [16] First-Principle Study of a ZnS/Graphene Heterostructure as a Promising Anode Material for Lithium-Ion Batteries
    Feng, Shihao
    Wang, Zhixing
    Guo, Huajun
    Li, Xinhai
    Yan, Guochun
    Wang, Jiexi
    ENERGY & FUELS, 2022, 36 (01) : 677 - 683
  • [17] Twin-Graphene: A Promising Anode Material for Lithium-Ion Batteries with Ultrahigh Specific Capacity
    Gao, Shuli
    Abduryim, Elyas
    Chen, Changcheng
    Dong, Chao
    Guan, Xiaoning
    Guo, Shuangna
    Kuai, Yue
    Wu, Ge
    Chen, Wen
    Lu, Pengfei
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (29) : 14065 - 14074
  • [18] Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries
    Jiang, H. R.
    Lu, Ziheng
    Wu, M. C.
    Ciucci, Francesco
    Zhao, T. S.
    NANO ENERGY, 2016, 23 : 97 - 104
  • [19] Bimetallic coordination polymer as a promising anode material for lithium-ion batteries
    Li, Chao
    Hu, Xiaoshi
    Lou, Xiaobing
    Chen, Qun
    Hu, Bingwen
    CHEMICAL COMMUNICATIONS, 2016, 52 (10) : 2035 - 2038
  • [20] MoO2 and graphene heterostructure as promising flexible anodes for lithium-ion batteries
    Ma, Jiachen
    Fu, Jia
    Niu, Mengqi
    Quhe, Ruge
    CARBON, 2019, 147 : 357 - 363