The Impact Resistance and Mechanical Properties of Recycled Aggregate Concrete with Hooked-End and Crimped Steel Fiber

被引:17
作者
Kong, Xiangqing [1 ]
Yao, Yanbin [1 ]
Wu, Bojian [1 ]
Zhang, Wenjiao [1 ]
He, Wenchang [1 ]
Fu, Ying [1 ,2 ]
机构
[1] Liaoning Univ Technol, Sch Civil Engn, Jinzhou 121001, Peoples R China
[2] Songshan Lake Mat Lab, Dongguan 523808, Peoples R China
关键词
steel fiber; recycled aggregate concrete; impact resistance; mechanical properties; Weibull distribution; microstructure; DEMOLITION WASTE MANAGEMENT; REINFORCED CONCRETE; COARSE AGGREGATE; DURABILITY PROPERTIES; FLEXURAL BEHAVIOR; SILICA FUME; PERFORMANCE; STRENGTH; CONSTRUCTION; MICROSTRUCTURE;
D O I
10.3390/ma15197029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The utilization of recycled coarse aggregate (RCA) from construction and demolition waste (CDW) is a sustainable solution to protect the fragile natural environment and save the diminishing natural resources. The current study was aimed at exploring the impact resistance and mechanical properties of recycled aggregate concrete (RAC) affected by hooked-end steel fiber (HF) and crimped steel fiber (CF). Fifteen concrete mixtures considering different RCA substitution ratio, steel fiber dosage, and steel fiber shapes were designed. Meanwhile, a statistical analysis method-based Weibull distribution was introduced to evaluate the variations of impact test results, presented using a reliability function. Lastly, the microstructural morphologies of interfacial transition zones at the cement paste/aggregate and cement paste/fiber interfaces were observed using a scanning electron microscope (SEM). The experimental results showed that the impact resistance and mechanical properties mildly decreased with the increase in substitution ratio of RCA, whereas they conclusively increased with the increase in steel fiber content. Steel fiber recycled aggregate concrete (SFRAC) with 1.5% steel fiber content had the best impact resistance, and its initial cracking times and final failure times were 3.25-4.75 and 8.78-29.08 times those of plain RAC, respectively. HF has better impact resistance than CF. The SEM observations of microstructures indicated that the hardened cement paste of natural aggregate concrete (NAC) was more compact than that of RAC. Steel fiber had a better connection with the cement paste interface than that of aggregate and cement paste owing to better thermal conductivity. This research could be a guide for SFRAC as a structural material in practical engineering, steering the construction industry toward the circular economy.
引用
收藏
页数:24
相关论文
共 62 条
[1]   Influence of self-healing, mixing method and adding silica fume on mechanical properties of recycled aggregates concrete [J].
Abd Elhakam, Ali ;
Mohamed, Abd Elmoaty ;
Awad, Eslam .
CONSTRUCTION AND BUILDING MATERIALS, 2012, 35 :421-427
[2]   Repeated drop-weight impact tests on self-compacting concrete reinforced with micro-steel fiber [J].
Abid, Sallal R. ;
Abdul-Hussein, Munther L. ;
Ayoob, Nadheer S. ;
Ali, Sajjad H. ;
Kadhum, Ahmed L. .
HELIYON, 2020, 6 (01)
[3]   Influence of double hooked-end steel fibers and slag on mechanical and durability properties of high performance recycled aggregate concrete [J].
Afroughsabet, Vahid ;
Biolzi, Luigi ;
Ozbakkaloglu, Togay .
COMPOSITE STRUCTURES, 2017, 181 :273-284
[4]   Eco-Efficient Fiber-Reinforced Preplaced Recycled Aggregate Concrete under Impact Loading [J].
Alfayez, Saud ;
Ali, Mohamed ;
Nehdi, Moncef .
INFRASTRUCTURES, 2019, 4 (02)
[5]   Synergistic effects of fly ash and hooked steel fibers on strength and durability properties of high strength recycled aggregate concrete [J].
Ali, Babar ;
Raza, Syed Safdar ;
Kurda, Rawaz ;
Alyousef, Rayed .
RESOURCES CONSERVATION AND RECYCLING, 2021, 168
[6]   Influence of glass fibers on mechanical and durability performance of concrete with recycled aggregates [J].
Ali, Babar ;
Qureshi, Liaqat Ali .
CONSTRUCTION AND BUILDING MATERIALS, 2019, 228
[7]   Hybrid-fiber reinforced engineered cementitious composite under tensile and impact loading [J].
Ali, M. A. E. M. ;
Soliman, A. M. ;
Nehdi, M. L. .
MATERIALS & DESIGN, 2017, 117 :139-149
[8]  
[Anonymous], 2016, GB/T 50080-2016
[9]  
[Anonymous], 2007, Common Portland cement
[10]  
[Anonymous], 2010, JGJT 221-2010