Adaptive kernel smoothing regression for spatio-temporal environmental datasets

被引:3
|
作者
Pouzols, Federico Montesino [1 ,5 ]
Lendasse, Amaury [2 ,3 ,4 ]
机构
[1] Univ Helsinki, Bioctr 3, Dept Biosci, FI-00014 Helsinki, Finland
[2] Aalto Univ, Dept Informat & Comp Sci, Adapt Informat Res Ctr, Sch Sci & Technol, Espoo, Finland
[3] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain
[4] Univ Basque Country, Fac Comp Sci, Computat Intelligence Grp, Donostia San Sebastian, Spain
[5] Univ Helsinki, Fac Biol & Environm Sci, Biodivers Conservat Informat Grp, Ctr Excellence Metapopulat Biol,Dept Biosci, FI-00014 Helsinki, Finland
关键词
Kernel smoothing regression; Adaptive regression; Vector quantization; Spatio-temporal models; Environmental applications; Evolving intelligent systems; ONLINE; IDENTIFICATION; MODELS;
D O I
10.1016/j.neucom.2012.02.023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A method for performing kernel smoothing regression in an incremental, adaptive manner is described. A simple and fast combination of incremental vector quantization with kernel smoothing regression using adaptive bandwidth is shown to be effective for online modeling of environmental datasets. The approach proposed is to apply kernel smoothing regression in an incremental estimation of the (evolving) probability distribution of the incoming data stream rather than the whole sequence of observations. The method is illustrated on publicly available datasets corresponding to the Tropical Atmosphere Ocean array and the Helsinki Commission hydrographic database for the Baltic Sea. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:59 / 65
页数:7
相关论文
共 50 条
  • [31] Spatio-temporal Event Classification Using Time-Series Kernel Based Structured Sparsity
    Jeni, Laszlo A.
    Lorincz, Andras
    Szabo, Zoltan
    Cohn, Jeffrey F.
    Kanade, Takeo
    COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 135 - 150
  • [32] A Spatio-Temporal Analysis of the Environmental Correlates of COVID-19 Incidence in Spain
    Paez, Antonio
    Lopez, Fernando A.
    Menezes, Tatiane
    Cavalcanti, Renata
    da Rocha Pitta, Maira Galdino
    GEOGRAPHICAL ANALYSIS, 2021, 53 (03) : 397 - 421
  • [33] Spatio-temporal clustering of earthquakes based on distribution of magnitudes
    Yamagishi, Yuki
    Saito, Kazumi
    Hirahara, Kazuro
    Ueda, Naonori
    APPLIED NETWORK SCIENCE, 2021, 6 (01)
  • [34] Flexible Bayesian P-splines for smoothing age-specific spatio-temporal mortality patterns
    Goicoa, T.
    Adin, A.
    Etxeberria, J.
    Militino, A. F.
    Ugarte, M. D.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (02) : 384 - 403
  • [35] Robust Recovery of Temporal Overlap Between Network Activity Using Transient-Informed Spatio-Temporal Regression
    Zoller, Daniela M.
    Bolton, Thomas A. W.
    Karahanoglu, Fikret Isik
    Eliez, Stephan
    Schaer, Marie
    Van De Ville, Dimitri
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (01) : 291 - 302
  • [36] Spatio-Temporal Variational Gaussian Processes
    Hamelijnck, Oliver
    Wilkinson, William J.
    Loppi, Niki A.
    Solin, Arno
    Damoulas, Theodoros
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [37] Spatio-temporal reconciliation of solar forecasts
    Di Fonzo, Tommaso
    Girolimetto, Daniele
    SOLAR ENERGY, 2023, 251 : 13 - 29
  • [38] Spatio-temporal stochastic modelling (METMAVI)
    Raquel Menezes
    A. Manuela Gonçalves
    Stochastic Environmental Research and Risk Assessment, 2014, 28 : 1167 - 1169
  • [39] Spatio-temporal stochastic modelling (METMAVI)
    Menezes, Raquel
    Manuela Goncalves, A.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2014, 28 (05) : 1167 - 1169
  • [40] A PRACTICAL APPROACH TO SPATIO-TEMPORAL ANALYSIS
    Jiang, Huijing
    Schoergendorfer, Angela
    Hwang, Youngdeok
    Amemiya, Yasuo
    STATISTICA SINICA, 2015, 25 (01) : 369 - 384