Adaptive kernel smoothing regression for spatio-temporal environmental datasets

被引:3
|
作者
Pouzols, Federico Montesino [1 ,5 ]
Lendasse, Amaury [2 ,3 ,4 ]
机构
[1] Univ Helsinki, Bioctr 3, Dept Biosci, FI-00014 Helsinki, Finland
[2] Aalto Univ, Dept Informat & Comp Sci, Adapt Informat Res Ctr, Sch Sci & Technol, Espoo, Finland
[3] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain
[4] Univ Basque Country, Fac Comp Sci, Computat Intelligence Grp, Donostia San Sebastian, Spain
[5] Univ Helsinki, Fac Biol & Environm Sci, Biodivers Conservat Informat Grp, Ctr Excellence Metapopulat Biol,Dept Biosci, FI-00014 Helsinki, Finland
关键词
Kernel smoothing regression; Adaptive regression; Vector quantization; Spatio-temporal models; Environmental applications; Evolving intelligent systems; ONLINE; IDENTIFICATION; MODELS;
D O I
10.1016/j.neucom.2012.02.023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A method for performing kernel smoothing regression in an incremental, adaptive manner is described. A simple and fast combination of incremental vector quantization with kernel smoothing regression using adaptive bandwidth is shown to be effective for online modeling of environmental datasets. The approach proposed is to apply kernel smoothing regression in an incremental estimation of the (evolving) probability distribution of the incoming data stream rather than the whole sequence of observations. The method is illustrated on publicly available datasets corresponding to the Tropical Atmosphere Ocean array and the Helsinki Commission hydrographic database for the Baltic Sea. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:59 / 65
页数:7
相关论文
共 50 条
  • [21] A kernel-enriched order-dependent nonparametric spatio-temporal process
    Das, Moumita
    Bhattacharya, Sourabh
    SPATIAL STATISTICS, 2023, 55
  • [22] Dynamic Spatio-temporal Access Queries using Semi-Supervised Regression
    Conlan, Chris
    Cunningham, Teddy
    Ferhatosmanoglu, Hakan
    2023 IEEE 39TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS, ICDEW, 2023, : 162 - 169
  • [23] Spatial effect detection regression for large-scale spatio-temporal covariates
    Zhang, Chenlin
    Zhou, Ling
    Guo, Bin
    Lin, Huazhen
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2025,
  • [24] Online spatio-temporal action detection with adaptive sampling and hierarchical modulation
    Su, Shaowen
    Gan, Minggang
    MULTIMEDIA SYSTEMS, 2024, 30 (06)
  • [25] Spatio-temporal disease mapping using INLA
    Schroedle, Birgit
    Held, Leonhard
    ENVIRONMETRICS, 2011, 22 (06) : 725 - 734
  • [26] A spatio-temporal analysis of migration
    Milivinti, Alice
    EMPIRICAL ECONOMICS, 2019, 57 (04) : 1411 - 1442
  • [27] Banded spatio-temporal autoregressions
    Gao, Zhaoxing
    Ma, Yingying
    Wang, Hansheng
    Yao, Qiwei
    JOURNAL OF ECONOMETRICS, 2019, 208 (01) : 211 - 230
  • [28] SPATIO-TEMPORAL MEASURES OF NATURALNESS
    Sinno, Zeina
    Bovik, Alan C.
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1750 - 1754
  • [29] A spatio-temporal approach to estimate patterns of climate change
    Laurini, M. P.
    ENVIRONMETRICS, 2019, 30 (01)
  • [30] A novel framework for spatio-temporal prediction of environmental data using deep learning
    Amato, Federico
    Guignard, Fabian
    Robert, Sylvain
    Kanevski, Mikhail
    SCIENTIFIC REPORTS, 2020, 10 (01)