Adaptive kernel smoothing regression for spatio-temporal environmental datasets

被引:3
|
作者
Pouzols, Federico Montesino [1 ,5 ]
Lendasse, Amaury [2 ,3 ,4 ]
机构
[1] Univ Helsinki, Bioctr 3, Dept Biosci, FI-00014 Helsinki, Finland
[2] Aalto Univ, Dept Informat & Comp Sci, Adapt Informat Res Ctr, Sch Sci & Technol, Espoo, Finland
[3] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain
[4] Univ Basque Country, Fac Comp Sci, Computat Intelligence Grp, Donostia San Sebastian, Spain
[5] Univ Helsinki, Fac Biol & Environm Sci, Biodivers Conservat Informat Grp, Ctr Excellence Metapopulat Biol,Dept Biosci, FI-00014 Helsinki, Finland
关键词
Kernel smoothing regression; Adaptive regression; Vector quantization; Spatio-temporal models; Environmental applications; Evolving intelligent systems; ONLINE; IDENTIFICATION; MODELS;
D O I
10.1016/j.neucom.2012.02.023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A method for performing kernel smoothing regression in an incremental, adaptive manner is described. A simple and fast combination of incremental vector quantization with kernel smoothing regression using adaptive bandwidth is shown to be effective for online modeling of environmental datasets. The approach proposed is to apply kernel smoothing regression in an incremental estimation of the (evolving) probability distribution of the incoming data stream rather than the whole sequence of observations. The method is illustrated on publicly available datasets corresponding to the Tropical Atmosphere Ocean array and the Helsinki Commission hydrographic database for the Baltic Sea. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:59 / 65
页数:7
相关论文
共 50 条
  • [1] Bayesian hierarchical spatio-temporal smoothing for very large datasets
    Katzfuss, Matthias
    Cressie, Noel
    ENVIRONMETRICS, 2012, 23 (01) : 94 - 107
  • [2] Spatio-temporal statistical methods in environmental and biometrical problems
    Mateu, Jorge
    Crujeiras, Rosa M.
    Menezes, Raquel
    Montes, Francisco
    SPATIAL STATISTICS, 2017, 22 : 219 - 224
  • [3] Smoothing spatio-temporal data with complex missing data patterns
    Arnone, Eleonora
    Sangalli, Laura M.
    Vicini, Andrea
    STATISTICAL MODELLING, 2023, 23 (04) : 327 - 356
  • [4] Spatio-temporal stochastic modelling of environmental hazards
    Mateu, Jorge
    Ignaccolo, Rosalba
    SPATIAL STATISTICS, 2015, 14 : 115 - 118
  • [5] Tensor Kernel Recovery for Discrete Spatio-Temporal Hawkes Processes
    Sheen, Heejune
    Zhu, Xiaonan
    Xie, Yao
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 5859 - 5870
  • [6] Spatio-Temporal Data Fusion for Very Large Remote Sensing Datasets
    Hai Nguyen
    Katzfuss, Matthias
    Cressie, Noel
    Braverman, Amy
    TECHNOMETRICS, 2014, 56 (02) : 174 - 185
  • [7] A Hybrid Method for Interpolating Missing Data in Heterogeneous Spatio-Temporal Datasets
    Deng, Min
    Fan, Zide
    Liu, Qiliang
    Gong, Jianya
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2016, 5 (02)
  • [8] Scalable Semiparametric Spatio-temporal Regression for Large Data Analysis
    Ma, Ting Fung
    Wang, Fangfang
    Zhu, Jun
    Ives, Anthony R.
    Lewinska, Katarzyna E.
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2023, 28 (02) : 279 - 298
  • [9] Efficient spatio-temporal Gaussian regression via Kalman filtering
    Todescato, Marco
    Carron, Andrea
    Carli, Ruggero
    Pillonetto, Gianluigi
    Schenato, Luca
    AUTOMATICA, 2020, 118
  • [10] Bootstrap joint prediction regions for sequences of missing values in spatio-temporal datasets
    Maria Lucia Parrella
    Giuseppina Albano
    Cira Perna
    Michele La Rocca
    Computational Statistics, 2021, 36 : 2917 - 2938