The number of independent sets of tricyclic graphs

被引:7
作者
Zhu, Zhongxun [1 ]
Yu, Qigang [1 ]
机构
[1] S Cent Univ Nationalities, Fac Math & Stat, Wuhan 430074, Peoples R China
关键词
Independent set; Fibonacci number; Tricyclic graph; MERRIFIELD-SIMMONS INDEX; HOSOYA INDEX; RESPECT;
D O I
10.1016/j.aml.2011.11.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T-n, be the class of tricyclic graphs G on n vertices. In this work, the graphs in T-n with the smallest number of independent sets are characterized. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1327 / 1334
页数:8
相关论文
共 9 条
[1]  
[Anonymous], 2013, Modern graph theory
[2]   The smallest Merrifield-Simmons index of (n, n+1)-graphs [J].
Deng, Hanyuan .
MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (1-2) :320-326
[3]  
Deng HY, 2008, MATCH-COMMUN MATH CO, V59, P171
[4]   The Merrifield-Simmons index in (n,n+1)-graphs [J].
Deng, Hanyuan ;
Chen, Shubo ;
Zhang, Jie .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2008, 43 (01) :75-91
[5]  
Gutman I., 1986, Mathematical concepts in organic chemistry, DOI 10.1515/9783112570180
[6]  
Li S, 2008, MATCH-COMMUN MATH CO, V59, P397
[7]  
PRODINGER H, 1982, FIBONACCI QUART, V20, P16
[8]  
Wagner SG, 2007, MATCH-COMMUN MATH CO, V57, P221
[9]   Tricyclic graphs with maximum Merrifield-Simmons index [J].
Zhu, Zhongxun ;
Li, Shuchao ;
Tan, Liansheng .
DISCRETE APPLIED MATHEMATICS, 2010, 158 (03) :204-212