On Generalizing Detection Models for Unconstrained Environments

被引:5
作者
Bhargava, Prajjwal
机构
来源
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW) | 2019年
关键词
D O I
10.1109/ICCVW.2019.00529
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object detection has seen tremendous progress in recent years. However, current algorithms don't generalize well when tested on diverse data distributions. We address the problem of incremental learning in object detection on the India Driving Dataset (IDD). Our approach involves using multiple domain-specific classifiers and effective transfer learning techniques focussed on avoiding catastrophic forgetting. We evaluate our approach on the IDD and BDD100K dataset. Results show the effectiveness of our domain adaptive approach in the case of domain shifts in environments.
引用
收藏
页码:4296 / 4301
页数:6
相关论文
共 29 条
[11]  
Duan K., 2019, ABS190408189 CORR
[12]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[13]  
He K., 2014, ABS14064729 CORR
[14]  
Howard J., 2018, ARXIV180106146
[15]  
Huang X., 2018, ABS180306184 CORR
[16]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[17]  
Li P., 2019, ABS190209738 CORR
[18]  
Li Y., 2019, ABS190101892 CORR
[19]  
Li Z., 2016, ABS160609282 CORR
[20]  
Lin T., 2019, ARXIV