Live animal myelin histomorphometry of the spinal cord with video-rate multimodal nonlinear microendoscopy

被引:37
作者
Belanger, Erik [1 ,2 ,3 ]
Crepeau, Joel [1 ,2 ,3 ]
Laffray, Sophie [1 ]
Vallee, Real [1 ,2 ,3 ]
De Koninck, Yves [1 ,2 ,4 ]
Cote, Daniel [1 ,2 ,3 ]
机构
[1] Univ Laval, Ctr Rech Inst Univ Sante Mentale Quebec, Quebec City, PQ, Canada
[2] Univ Laval, COPL, Quebec City, PQ, Canada
[3] Univ Laval, Dept Phys Genie Phys & Opt, Quebec City, PQ, Canada
[4] Univ Laval, Dept Psychiat & Neurosci, Quebec City, PQ, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
biomedical optics; endoscopy; fluorescence; microscopy; nonlinear optics; Raman effect; RAMAN SCATTERING MICROSCOPY; PHOTONIC CRYSTAL FIBER; IN-VIVO; FLUORESCENCE MICROENDOSCOPY; OPTICAL-FIBERS; LASER SOURCE; BRAIN; ENDOSCOPY; CONTRAST; TISSUES;
D O I
10.1117/1.JBO.17.2.021107
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In vivo imaging of cellular dynamics can be dramatically enabling to understand the pathophysiology of nervous system diseases. To fully exploit the power of this approach, the main challenges have been to minimize invasiveness and maximize the number of concurrent optical signals that can be combined to probe the interplay between multiple cellular processes. Label-free coherent anti-Stokes Raman scattering (CARS) microscopy, for example, can be used to follow demyelination in neurodegenerative diseases or after trauma, but myelin imaging alone is not sufficient to understand the complex sequence of events that leads to the appearance of lesions in the white matter. A commercially available microendoscope is used here to achieve minimally invasive, video-rate multimodal nonlinear imaging of cellular processes in live mouse spinal cord. The system allows for simultaneous CARS imaging of myelin sheaths and two-photon excitation fluorescence microendoscopy of microglial cells and axons. Morphometric data extraction at high spatial resolution is also described, with a technique for reducing motion-related imaging artifacts. Despite its small diameter, the microendoscope enables high speed multimodal imaging over wide areas of tissue, yet at resolution sufficient to quantify subtle differences in myelin thickness and microglial motility. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.2.021107]
引用
收藏
页数:7
相关论文
共 36 条
[12]   Efficient subpixel image registration algorithms [J].
Guizar-Sicairos, Manuel ;
Thurman, Samuel T. ;
Fienup, James R. .
OPTICS LETTERS, 2008, 33 (02) :156-158
[13]  
GUY J, 1991, BRAIN, V114, P281
[14]   Microglia: active sensor and versatile effector cells in the normal and pathologic brain [J].
Hanisch, Uwe-Karsten ;
Kettenmann, Helmut .
NATURE NEUROSCIENCE, 2007, 10 (11) :1387-1394
[15]  
Hostikka SL, 2009, INT J BIOL SCI, V5, P397
[16]   In vivo mammalian brain Imaging using one- and two-photon fluorescence microendoscopy [J].
Jung, JC ;
Mehta, AD ;
Aksay, E ;
Stepnoski, R ;
Schnitzer, MJ .
JOURNAL OF NEUROPHYSIOLOGY, 2004, 92 (05) :3121-3133
[17]   Multiphoton endoscopy [J].
Jung, JC ;
Schnitzer, MJ .
OPTICS LETTERS, 2003, 28 (11) :902-904
[18]   In vivo imaging of axonal degeneration and regeneration in the injured spinal cord [J].
Kerschensteiner, M ;
Schwab, ME ;
Lichtman, JW ;
Misgeld, T .
NATURE MEDICINE, 2005, 11 (05) :572-577
[19]   In vivo confocal and multiphoton microendoscopy [J].
Kim, Pilhan ;
Puoris'haag, Mehron ;
Cote, Daniel ;
Lin, Charles P. ;
Yun, Seok H. .
JOURNAL OF BIOMEDICAL OPTICS, 2008, 13 (01)
[20]   Adaptive Movement Compensation for In Vivo Imaging of Fast Cellular Dynamics within a Moving Tissue [J].
Laffray, Sophie ;
Pages, Stephane ;
Dufour, Hugues ;
De Koninck, Paul ;
De Koninck, Yves ;
Cote, Daniel .
PLOS ONE, 2011, 6 (05)