Logarithmic Oscillators: Ideal Hamiltonian Thermostats

被引:22
作者
Campisi, Michele [1 ]
Zhan, Fei [1 ]
Talkner, Peter [1 ]
Haenggi, Peter [1 ]
机构
[1] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
关键词
DYNAMICS; TEMPERATURE; EQUATION;
D O I
10.1103/PhysRevLett.108.250601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A logarithmic oscillator (in short, log-oscillator) behaves like an ideal thermostat because of its infinite heat capacity: When it weakly couples to another system, time averages of the system observables agree with ensemble averages from a Gibbs distribution with a temperature T that is given by the strength of the logarithmic potential. The resulting equations of motion are Hamiltonian and may be implemented not only in a computer but also with real-world experiments, e.g., with cold atoms.
引用
收藏
页数:5
相关论文
共 29 条
[11]   Solution of the Fokker-Planck Equation with a Logarithmic Potential [J].
Dechant, A. ;
Lutz, E. ;
Barkai, E. ;
Kessler, D. A. .
JOURNAL OF STATISTICAL PHYSICS, 2011, 145 (06) :1524-1545
[12]   Hamiltonian reformulation and pairing of Lyapunov exponents for Nose-Hoover dynamics [J].
Dettmann, CP ;
Morriss, GP .
PHYSICAL REVIEW E, 1997, 55 (03) :3693-3696
[13]   NUMERICAL-INTEGRATION OF THE LANGEVIN EQUATION - MONTE-CARLO SIMULATION [J].
ERMAK, DL ;
BUCKHOLZ, H .
JOURNAL OF COMPUTATIONAL PHYSICS, 1980, 35 (02) :169-182
[14]   Direct experimental evidence for a negative heat capacity in the liquid-to-gas phase transition in hydrogen cluster ions:: Backbending of the caloric curve -: art. no. 183403 [J].
Gobet, F ;
Farizon, B ;
Farizon, M ;
Gaillard, MJ ;
Buchet, JP ;
Carré, M ;
Scheier, P ;
Märk, TD .
PHYSICAL REVIEW LETTERS, 2002, 89 (18)
[15]   Diffusion in a logarithmic potential: scaling and selection in the approach to equilibrium [J].
Hirschberg, Ori ;
Mukamel, David ;
Schuetz, Gunter M. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2012,
[16]   Approach to equilibrium of diffusion in a logarithmic potential [J].
Hirschberg, Ori ;
Mukamel, David ;
Schuetz, Gunter M. .
PHYSICAL REVIEW E, 2011, 84 (04)
[17]  
Hoover W. G., ARXIV12040312V2
[18]  
Hoover W.G., 2012, Time reversibility, computer simulation, algorithms, chaos
[19]   CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS [J].
HOOVER, WG .
PHYSICAL REVIEW A, 1985, 31 (03) :1695-1697
[20]  
Khinchin A I., 1949, Mathematical Foundations of Statistical Mechanics