Logarithmic Oscillators: Ideal Hamiltonian Thermostats

被引:22
作者
Campisi, Michele [1 ]
Zhan, Fei [1 ]
Talkner, Peter [1 ]
Haenggi, Peter [1 ]
机构
[1] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
关键词
DYNAMICS; TEMPERATURE; EQUATION;
D O I
10.1103/PhysRevLett.108.250601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A logarithmic oscillator (in short, log-oscillator) behaves like an ideal thermostat because of its infinite heat capacity: When it weakly couples to another system, time averages of the system observables agree with ensemble averages from a Gibbs distribution with a temperature T that is given by the strength of the logarithmic potential. The resulting equations of motion are Hamiltonian and may be implemented not only in a computer but also with real-world experiments, e.g., with cold atoms.
引用
收藏
页数:5
相关论文
共 29 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS, V55
[2]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[3]  
[Anonymous], 2006, SPRINGER SERIES COMP
[4]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[5]  
Campisi M., ARXIV12044412V1
[6]   Colloquium: Quantum fluctuation relations: Foundations and applications (vol 83, pg 771, 2011) [J].
Campisi, Michele ;
Haenggi, Peter ;
Talkner, Peter .
REVIEWS OF MODERN PHYSICS, 2011, 83 (04) :1653-1653
[7]   Colloquium: Quantum fluctuation relations: Foundations and applications [J].
Campisi, Michele ;
Haenggi, Peter ;
Talkner, Peter .
REVIEWS OF MODERN PHYSICS, 2011, 83 (03) :771-791
[8]   Fluctuation Theorem for Arbitrary Open Quantum Systems [J].
Campisi, Michele ;
Talkner, Peter ;
Haenggi, Peter .
PHYSICAL REVIEW LETTERS, 2009, 102 (21)
[9]   Control of nanoparticles with arbitrary two-dimensional force fields [J].
Cohen, AE .
PHYSICAL REVIEW LETTERS, 2005, 94 (11)
[10]   Fluctuations of Time Averages for Langevin Dynamics in a Binding Force Field [J].
Dechant, A. ;
Lutz, E. ;
Kessler, D. A. ;
Barkai, E. .
PHYSICAL REVIEW LETTERS, 2011, 107 (24)