Classical properties of measure theory on effect algebras

被引:4
作者
Aizpuru, A. [1 ]
Tamayo, M. [1 ]
机构
[1] Univ Cadiz, Fac Ciencias, Dept Matemat, Cadiz 11510, Spain
关键词
effect algebras; measure;
D O I
10.1016/j.fss.2006.03.010
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we study how some classic properties in measure theory, valid on Boolean algebras, still hold in quantum logic, mainly, on quantum logic of sets. We obtain some results about the Vitali-Hahn-S aks property and the Nikodym property for sequences of real valued, sigma-additive measures. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:2139 / 2143
页数:5
相关论文
共 16 条
[1]   On the interchange of series and some applications [J].
Aizpuru, A ;
Gutiérrez-Dávila, A .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2004, 11 (03) :409-430
[2]   Unconditional Cauchy series and uniform convergence on matrices [J].
Aizpuru, A ;
Gutiérrez-Dávila, A .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2004, 25 (03) :335-346
[3]   The logic of quantum mechanics [J].
Birkhoff, G ;
von Neumann, J .
ANNALS OF MATHEMATICS, 1936, 37 :823-843
[4]  
DVRECENSKIJ A, 2000, NEW TRENDS QUANTUM S
[5]  
DVRECENSKIJ A, 1978, MATH SLOVACA, V28, P289
[6]   Fuzzy set representations of some quantum structures [J].
Dvurecenskij, A .
FUZZY SETS AND SYSTEMS, 1999, 101 (01) :67-78
[7]   EFFECT ALGEBRAS AND UNSHARP QUANTUM-LOGICS [J].
FOULIS, DJ ;
BENNETT, MK .
FOUNDATIONS OF PHYSICS, 1994, 24 (10) :1331-1352
[8]  
Godowski R., 1981, Demonstratio Math, V14, P725
[9]  
GUDDER SP, 1979, QUANTUM PROBABILITY
[10]  
Hohle U, 1995, NONCLASSICAL LOGICS