Organization of polymer chains onto long, single-wall carbon nano-tubes: Effect of tube diameter and cooling method

被引:20
作者
Kumar, Sunil [1 ]
Pattanayek, Sudip K. [1 ]
Pereira, Gerald G. [2 ]
机构
[1] Indian Inst Technol, Dept Chem Engn, New Delhi 110016, India
[2] CSIRO Math Informat & Stat, Clayton, Vic 3169, Australia
关键词
MOLECULAR-DYNAMICS SIMULATION; SEMIFLEXIBLE POLYMERS; POOR SOLVENTS; MONTE-CARLO; NANOTUBES; COMPOSITES; NANOCOMPOSITES; CRYSTALLIZATION; BEHAVIOR; DEFORMATION;
D O I
10.1063/1.4860976
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We use molecular dynamics simulations to investigate the arrangement of polymer chains when absorbed onto a long, single-wall carbon nano-tube (SWCNT). We study the conformation and organization of the polymer chains on the SWCNT and their dependence on the tube's diameter and the rate of cooling. We use two types of cooling processes: direct quenching and gradual cooling. The radial density distribution function and bond orientational order parameter are used to characterize the polymer chain structure near the surface. In the direct cooling process, the beads of the polymer chain organize in lamella-like patterns on the surface of the SWCNT with the long axis of the lamella parallel to the axis of the SWCNT. In a stepwise, gradual cooling process, the polymer beads form a helical pattern on the surface of a relatively thick SWCNT, but form a lamella-like pattern on the surface of a very thin SWCNT. We develop a theoretical (free energy) model to explain this difference in pattern structures for the gradual cooling process and also provide a qualitative explanation for the pattern that forms from the direct cooling process. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:14
相关论文
共 56 条
  • [1] ABRAMOWITZ M, 1970, HDB MATH FUNCTIONS, P587
  • [2] Adhesion energy in carbon nanotube-polyethylene composite: Effect of chirality
    Al-Haik, M
    Hussaini, MY
    Garmestani, H
    [J]. JOURNAL OF APPLIED PHYSICS, 2005, 97 (07)
  • [3] Allen M.P., 1987, COMPUTER SIMULATIONS, P191
  • [4] Nanotube composite carbon fibers
    Andrews, R
    Jacques, D
    Rao, AM
    Rantell, T
    Derbyshire, F
    Chen, Y
    Chen, J
    Haddon, RC
    [J]. APPLIED PHYSICS LETTERS, 1999, 75 (09) : 1329 - 1331
  • [5] Langevin dynamics simulations reveal biologically relevant folds arising from the incorporation of a torsional potential
    Anjukandi, Padmesh
    Pereira, Gerald G.
    Williams, Martin A. K.
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2010, 265 (03) : 245 - 249
  • [6] Carbon nanotubes - the route toward applications
    Baughman, RH
    Zakhidov, AA
    de Heer, WA
    [J]. SCIENCE, 2002, 297 (5582) : 787 - 792
  • [7] Carbon nanotube composites for thermal management
    Biercuk, MJ
    Llaguno, MC
    Radosavljevic, M
    Hyun, JK
    Johnson, AT
    Fischer, JE
    [J]. APPLIED PHYSICS LETTERS, 2002, 80 (15) : 2767 - 2769
  • [8] Thermal properties and percolation in carbon nanotube-polymer composites
    Bonnet, P.
    Sireude, D.
    Garnier, B.
    Chauvet, O.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (20)
  • [9] Deformation of carbon nanotubes in nanotube-polymer composites
    Bower, C
    Rosen, R
    Jin, L
    Han, J
    Zhou, O
    [J]. APPLIED PHYSICS LETTERS, 1999, 74 (22) : 3317 - 3319
  • [10] Electrical Conductivity Enhancement of Polymer/Multiwalled Carbon Nanotube (MWCNT) Composites by Thermally-Induced Defunctionalization of MWCNTs
    Chang, Chia-Ming
    Liu, Ying-Ling
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (07) : 2204 - 2208