VARIABLE-COEFFICIENT MIURA TRANSFORMATIONS AND INTEGRABLE PROPERTIES FOR A GENERALIZED VARIABLE-COEFFICIENT KORTEWEG-de VRIES EQUATION FROM BOSE-EINSTEIN CONDENSATES WITH SYMBOLIC COMPUTATION

被引:6
作者
Li, Juan [1 ]
Tian, Bo [1 ,3 ,4 ]
Meng, Xiang-Hua [1 ]
Xu, Tao [1 ]
Zhang, Chun-Yi [2 ]
Zhang, Ya-Xing [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Meteorol Ctr AF Command Post, Changchun 130051, Peoples R China
[3] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100083, Peoples R China
[4] Beijing Univ Posts & Telecommun, Key Lab Opt Commun & Lightwave Technol, Minist Educ, Beijing 100876, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2009年 / 23卷 / 04期
基金
中国国家自然科学基金;
关键词
Variable-coefficient Korteweg-de Vries equation; variable-coefficient Miura transformation; auto-Backlund transformation; Lax pair; NONLINEAR SCHRODINGER MODEL; KADOMTSEV-PETVIASHVILI EQUATION; ACOUSTIC SOLITARY WAVES; HIGHER-ORDER SOLUTION; BACKLUND TRANSFORMATION; OPTICAL-FIBERS; ARTERIAL MECHANICS; PLASMA PHYSICS; DUSTY PLASMA; SOLITONS;
D O I
10.1142/S0217979209049851
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, a generalized variable-coefficient Korteweg-de Vries (KdV) equation with the dissipative and/or perturbed/external-force terms is investigated, which arises in arterial mechanics, blood vessels, Bose gases of impenetrable bosons and trapped Bose-Einstein condensates. With the computerized symbolic computation, two variable-coefficient Miura transformations are constructed from such a model to the modified KdV equation under the corresponding constraints on the coefficient functions. Meanwhile, through these two transformations, a couple of auto-Backlund transformations, nonlinear superposition formulas and Lax pairs are obtained with the relevant constraints. Furthermore, the one- and two-solitonic solutions of this equation are explicitly presented and the physical properties and possible applications in some fields of these solitonic structures are discussed and pointed out.
引用
收藏
页码:571 / 584
页数:14
相关论文
共 60 条
[1]  
Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
[2]  
ASANO N, 1974, SUP PROG THEOR PHYS, P52
[3]   Symbolic calculation in chemistry: Selected examples [J].
Barnett, MP ;
Capitani, JF ;
von zur Gathen, J ;
Gerhard, J .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2004, 100 (02) :80-104
[4]  
CASCAVAL RC, 2003, LECT NOTES PURE APPL, V234
[5]   FORMATION OF SHOCKLIKE MODIFIED KORTEWEG-DEVRIES SOLITONS - APPLICATION TO DOUBLE-LAYERS [J].
CHANTEUR, G ;
RAADU, M .
PHYSICS OF FLUIDS, 1987, 30 (09) :2708-2719
[6]   Nonlinear dynamics of vortices in ultraclean type-II superconductors: Integrable wave equations in cylindrical geometry [J].
Coffey, MW .
PHYSICAL REVIEW B, 1996, 54 (02) :1279-1285
[7]   Solitary waves in an inhomogeneous rod composed of a general hyperelastic material [J].
Dai, HH ;
Huo, Y .
WAVE MOTION, 2002, 35 (01) :55-69
[8]  
Demiray H, 2004, MATH COMPUT MODEL, V39, P151, DOI [10.1016/S0895-7177(04)90004-0, 10.1016/S0895-7177(04)00006-8]
[9]   The effect of a bump on wave propagation in a fluid-filled elastic tube [J].
Demiray, H .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2004, 42 (02) :203-215
[10]   Higher order solution of the dust ion acoustic solitons in a warm dusty plasma with vortex-like electron distribution [J].
El-Labany, SK ;
Moslem, WM ;
El-Shewy, EK ;
Mowafy, AE .
CHAOS SOLITONS & FRACTALS, 2005, 23 (02) :581-588