Effect of dissolved organic matter on sorption and desorption of phenanthrene onto black carbon

被引:25
作者
Zhang, Jinghuan [1 ,2 ]
He, Mengchang [1 ]
机构
[1] Beijing Normal Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100875, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Environm & Safety Engn, Qingdao 266042, Peoples R China
基金
美国国家科学基金会;
关键词
DOM; black carbon; phenanthrene; sorption; desorption; DISTRIBUTED REACTIVITY MODEL; HUMIC-ACID; SEDIMENTS; SOIL; ADSORPTION; QUANTIFICATION; TEMPERATURE; ABSORPTION; PAHS;
D O I
10.1016/S1001-0742(12)60328-3
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sorption and desorption of phenanthrene (PHE) onto black carbon (BC) extracted from sediments were studied in the presence of three types of dissolved organic matter (DOM), including L-phenylalanine (L-PH), peptone and citric acid. The nonlinearity of the sorption isotherms increased in the presence of DOM. The presence of L-PH reduced the sorption capacity and desorption hysteresis because of the solubilization of PHE in L-PH solution. Peptone at 50-500 mg/L also led to a decrease in sorption attributed to solubilization, although the sorbed peptone on the BC surface could slightly increase PHE sorption. Unlike L-PH and peptone, citric acid enhanced the sorption capacity and irreversibility of PHE on BC mainly due to the strong sorption of citric acid on the BC surface. Our results may help to understand the different impacts of DOM on the distribution and transport of PAH in the environment.
引用
收藏
页码:2378 / 2383
页数:6
相关论文
共 29 条
[1]   Reinterpreting literature sorption data considering both absorption into organic carbon and adsorption onto black carbon [J].
Accardi-Dey, A ;
Gschwend, PM .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (01) :99-106
[2]   Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments [J].
Accardi-Dey, A ;
Gschwend, PM .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2002, 36 (01) :21-29
[3]   ATRAZINE DESORPTION FROM SMECTITES [J].
BARRIUSO, E ;
LAIRD, DA ;
KOSKINEN, WC ;
DOWDY, RH .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1994, 58 (06) :1632-1638
[4]   Quantification of the soot-water distribution coefficient of PAHs provides mechanistic basis for enhanced sorption observations [J].
Bucheli, TD ;
Gustafsson, Ö .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (24) :5144-5151
[5]  
Chen L, 2010, CHINESE J EXPT TRADI, V16, P30
[6]   Adsorption of dissolved natural organic matter by modified activated carbons [J].
Cheng, W ;
Dastgheib, SA ;
Karanfil, T .
WATER RESEARCH, 2005, 39 (11) :2281-2290
[7]   Kinetic study on the sorption of dissolved natural organic matter onto different aquifer materials: the effects of hydrophobicity and functional groups [J].
Chi, FH ;
Amy, GL .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2004, 274 (02) :380-391
[8]   Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils:: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation [J].
Cornelissen, G ;
Gustafsson, Ö ;
Bucheli, TD ;
Jonker, MTO ;
Koelmans, AA ;
Van Noort, PCM .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (18) :6881-6895
[9]   Sorption of phenanthrene to environmental black carbon in sediment with and without organic matter and native sorbates [J].
Cornelissen, G ;
Gustafsson, Ö .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (01) :148-155
[10]  
Cospedes F, 2006, ENVIRON POLLUT, V142, P449