Apolipoprotein Proteomic Profiling for the Prediction of Cardiovascular Death in Patients with Heart Failure

被引:4
|
作者
Lemesle, Gilles [1 ,2 ,3 ,4 ]
Chouraki, Vincent [1 ]
de Groote, Pascal [1 ,2 ,3 ]
Turkieh, Annie [1 ,5 ]
Beseme, Olivia [1 ,5 ]
Drobecq, Herve [6 ]
Amouyel, Philippe [1 ]
Lamblin, Nicolas [1 ,2 ,3 ,5 ]
Bauters, Christophe [1 ,2 ,3 ,5 ]
Pinet, Florence [1 ,5 ]
机构
[1] Univ Lille, INSERM, CHU Lille, Inst Pasteur Lille,U1167 RID AGE Facteurs Risque, F-59000 Lille, France
[2] CHU Lille, Inst Coeur Poumon, USIC, F-59000 Lille, France
[3] Ctr Hemodynam, F-59000 Lille, France
[4] French Alliance Cardiovasc Trials, F-75000 Paris, France
[5] FHU REMOD HF, Paris, France
[6] Univ Lille, CNRS UMR9017, Inserm U1019, CHU Lille,Inst Pasteur Lille,Ctr Infect & Immun L, F-59000 Lille, France
关键词
apolipoproteins; biomarkers; diseases; heart; heart failure; proteomics; risk stratification; MASS-SPECTROMETRY; RISK STRATIFICATION; PROTEINS; HOSPITALIZATION; QUANTITATION; GUIDELINES;
D O I
10.1002/prca.202000035
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Purpose Risk stratification in chronic systolic heart failure (HF) is critical to identify the patients who may benefit from advanced therapies. It is aimed at identifying new biomarkers to improve prognosis evaluation and help to better understand HF physiopathology. Experimental design Prognostic evaluation is performed in 198 patients with chronic systolic HF: 99 patients who died from cardiovascular cause within three years are individually matched for age, sex, and HF etiology (ischemic vs not) with 99 patients who are alive after three years of HF evaluation. A proteomic profiling of 15 apolipoproteins (Apo) is performed: Apo-A1, -A2, -A4, -B100, -C1, -C2, -C3, -C4, -D, -E, -F, -H, -J, -L1, and -M using LC-MRM-MS. Results In univariate analysis, the levels of Apo-B100 and -L1 are significantly lower and the levels of Apo-C1, -J, and -M are significantly higher in patients who died from cardiovascular cause as compared with patients alive. In the final statistical model, Apo-C1, Apo-J, and Apo-M improve individually the prediction of cardiovascular death. Ingenuity pathway analysis indicates these three Apo in a network associated with lipid metabolism, atherosclerosis signaling, and retinoid X receptor activation. Conclusions Proteomic profiling of apolipoproteins using LC-MRM-MS might be useful in clinical practice for risk stratification of HF patients.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Multimarker Proteomic Profiling for the Prediction of Cardiovascular Mortality in Patients with Chronic Heart Failure
    Lemesle, Gilles
    Maury, Fleur
    Beseme, Olivia
    Ovart, Lionel
    Amouyel, Philippe
    Lamblin, Nicolas
    de Groote, Pascal
    Bauters, Christophe
    Pinet, Florence
    PLOS ONE, 2015, 10 (04):
  • [2] Proteomic profiling and the risk of heart failure
    Stenemo, M. Markus
    Fall, T.
    Ingelsson, E.
    Sundstrom, J.
    Lind, L.
    Arnlov, J.
    EUROPEAN JOURNAL OF HEART FAILURE, 2015, 17 : 141 - 141
  • [3] Soluble Neprilysin Is Predictive of Cardiovascular Death and Heart Failure Hospitalization in Heart Failure Patients
    Bayes-Genis, Antoni
    Barallat, Jaume
    Galan, Amparo
    de Antonio, Marta
    Domingo, Mar
    Zamora, Elisabet
    Urrutia, Agustin
    Lupon, Josep
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2015, 65 (07) : 657 - 665
  • [4] Prediction of sudden death in elderly patients with heart failure
    Ana Ayesta
    Helena MartnezSells
    Antonio Bays de Luna
    Manuel MartnezSells
    Journal of Geriatric Cardiology, 2018, 15 (02) : 185 - 192
  • [5] Prediction of sudden death in elderly patients with heart failure
    Ana Ayesta
    Helena Martínez-Sellés
    Antonio Bayés de Luna
    Manuel Martínez-Sellés
    Journal of Geriatric Cardiology, 2018, 15 (02) : 185 - 192
  • [6] Prediction of sudden death in elderly patients with heart failure
    Ayesta, Ana
    Martinez-Selles, Helena
    Bayes de Luna, Antonio
    Martinez-Selles, Manuel
    JOURNAL OF GERIATRIC CARDIOLOGY, 2018, 15 (02) : 185 - 192
  • [7] Comparative proteomic profiling of mouse models of heart failure
    Emili, A.
    MOLECULAR & CELLULAR PROTEOMICS, 2006, 5 (10) : S256 - S256
  • [8] Proteomic Profiling to Identify Prognostic Biomarkers in Heart Failure
    Scott, Paul A.
    Zeidan, Bashar
    Ng, Leong L.
    Zeb, Mehmood
    Rosengarten, James A.
    Garbis, Spiros
    Curzen, Nick P.
    Morgan, John M.
    Townsend, Paula A.
    IN VIVO, 2012, 26 (06): : 875 - 882
  • [9] Effect of Dapagliflozin on Worsening Heart Failure and Cardiovascular Death in Patients With Heart Failure With and Without Diabetes
    Petrie, Mark C.
    Verma, Subodh
    Docherty, Kieran F.
    Inzucchi, Silvio E.
    Anand, Inder
    Belohlavek, Jan
    Boehm, Michael
    Chiang, Chern-En
    Chopra, Vijay K.
    de Boer, Rudolf A.
    Desai, Akshay S.
    Diez, Mirta
    Drozdz, Jaroslaw
    Dukat, Andre
    Ge, Junbo
    Howlett, Jonathan
    Katova, Tzvetana
    Kitakaze, Masafumi
    Ljungman, Charlotta E. A.
    Merkely, Bela
    Nicolau, Jose C.
    O'Meara, Eileen
    Vinh, Pham Nguyen
    Schou, Morten
    Tereshchenko, Sergey
    Kober, Lars
    Kosiborod, Mikhail N.
    Langkilde, Anna Maria
    Martinez, Felipe A.
    Ponikowski, Piotr
    Sabatine, Marc S.
    Sjostrand, Mikaela
    Solomon, Scott D.
    Johanson, Per
    Greasley, Peter J.
    Boulton, David
    Bengtsson, Olof
    Jhund, Pardeep S.
    McMurray, John J. V.
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2020, 323 (14): : 1353 - 1368
  • [10] Prediction of heart failure and death in an adult population of Fontan patients
    Sieweke, Jan Thorben
    Haghikia, Arash
    Riehle, Christian
    Klages, Carolin
    Akin, Muharrem
    Koenig, Tobias
    Zwadlo, Carolin
    Treptau, Jens
    Schaefer, Andreas
    Bauersachs, Johann
    Westhoff-Bleck, Mechthild
    CARDIOLOGY IN THE YOUNG, 2019, 29 (05) : 602 - 609