Taxonomic, functional, and phylogenetic dimensions of rodent biodiversity along an extensive tropical elevational gradient

被引:68
作者
Dreiss, Lindsay M. [1 ]
Burgio, Kevin R. [2 ]
Cisneros, Laura M. [2 ,3 ]
Klingbeil, Brian T. [2 ,3 ]
Patterson, Bruce D. [4 ]
Presley, Steven J. [2 ,3 ]
Willig, Michael R. [2 ,3 ]
机构
[1] Univ Connecticut, Dept Nat Resources & Environm, Storrs, CT 06269 USA
[2] Univ Connecticut, Dept Ecol & Evolutionary Biol, Storrs, CT 06269 USA
[3] Univ Connecticut, Ctr Environm Sci & Engn, Storrs, CT 06269 USA
[4] Field Museum Nat Hist, Integrat Res Ctr, Chicago, IL 60605 USA
基金
美国国家科学基金会;
关键词
MANU BIOSPHERE RESERVE; SPECIES RICHNESS; SMALL MAMMALS; ECOSYSTEM-FUNCTION; HIDDEN TREATMENTS; TRAIT DIVERSITY; GLOBAL PATTERNS; DIVERSIFICATION; BIRDS; LAND;
D O I
10.1111/ecog.00971
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Relationships among taxonomic, functional, and phylogenetic dimensions of biodiversity provide insight about the relative contributions of ecological and evolutionary processes in structuring local assemblages. We used data for rodent species distributions from an extensive tropical elevational gradient to 1) describe elevational gradients for each of three dimensions of biodiversity, 2) evaluate the sufficiency of species richness as a surrogate for other dimensions, and 3) quantify the relative support for mechanisms that increase or decrease phylogenetic or functional dispersion. Taxonomic biodiversity was quantified by species richness, as well as by richness, evenness, diversity, dominance, and rarity at generic and familial levels. Morphological and categorical traits were used to estimate functional biodiversity, and an ultrametric mammalian supertree was used as the basis for estimating phylogenetic biodiversity. Elevational gradients of each dimension of biodiversity were strong, with significant linear and non-linear components based on orthogonal polynomial regression. Empirical linear and non-linear regression components were consistently different than those expected based on species richness for generic, familial, and phylogenetic biodiversity, but not for functional biodiversity. Nevertheless, the congruence of dimensions of biodiversity based on correlation analyses indicated that any one dimension is a useful surrogate for the other dimensions for rodents at Manu. Given variation in species richness, assemblages from lowland rainforests comprised more biodiversity than expected, whereas assemblages from cloud and elfin forests represented less biodiversity than expected. Warm temperatures, vertical complexity of the vegetation, and high productivity likely facilitate niche differentiation in rainforests, whereas cricetid rodents are competitively superior to other clades in the less structurally complex, less productive, and colder, high elevation habitats.
引用
收藏
页码:876 / 888
页数:13
相关论文
共 94 条
[1]   Monitoring the Status and Trends of Tropical Forest Terrestrial Vertebrate Communities from Camera Trap Data: A Tool for Conservation [J].
Ahumada, Jorge A. ;
Hurtado, Johanna ;
Lizcano, Diego .
PLOS ONE, 2013, 8 (09)
[2]  
[Anonymous], BIOL CAVIOMORPH RODE
[3]   Avifaunal collapse in West African forest fragments [J].
Beier, P ;
Van Drielen, M ;
Kankam, BO .
CONSERVATION BIOLOGY, 2002, 16 (04) :1097-1111
[4]   DIVERSITY OF PLANKTONIC FORAMINIFERA IN DEEP-SEA SEDIMENTS [J].
BERGER, WH ;
PARKER, FL .
SCIENCE, 1970, 168 (3937) :1345-+
[5]   The delayed rise of present-day mammals [J].
Bininda-Emonds, Olaf R. P. ;
Cardillo, Marcel ;
Jones, Kate E. ;
MacPhee, Ross D. E. ;
Beck, Robin M. D. ;
Grenyer, Richard ;
Price, Samantha A. ;
Vos, Rutger A. ;
Gittleman, John L. ;
Purvis, Andy .
NATURE, 2007, 446 (7135) :507-512
[6]   Structure of the communities of small mammals (Micromammalia) in forests on western slopes of the Northern urals [J].
Bobretsov, AV ;
Luk'yanova, LE ;
Poroshin, EA .
RUSSIAN JOURNAL OF ECOLOGY, 2005, 36 (02) :120-126
[7]  
Botta-Dukát Z, 2005, J VEG SCI, V16, P533, DOI 10.1111/j.1654-1103.2005.tb02393.x
[8]   BODY SIZE, ECOLOGICAL DOMINANCE AND COPES RULE [J].
BROWN, JH ;
MAURER, BA .
NATURE, 1986, 324 (6094) :248-250
[9]  
Bruijnzeel LA, 1998, ECOLOGY, V79, P3, DOI 10.1890/0012-9658(1998)079[0003:CCATMF]2.0.CO
[10]  
2