Lieb-Robinson Bounds and Strongly Continuous Dynamics for a Class of Many-Body Fermion Systems in Rd

被引:0
|
作者
Gebert, Martin [1 ]
Nachtergaele, Bruno [1 ,2 ]
Reschke, Jake [1 ]
Sims, Robert [3 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[2] Univ Calif Davis, Ctr Quantum Math & Phys, Davis, CA 95616 USA
[3] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
来源
ANNALES HENRI POINCARE | 2020年 / 21卷 / 11期
基金
美国国家科学基金会;
关键词
EXPONENTIAL DECAY; RESOLVENT ALGEBRA; HARTREE EQUATION; SPECTRAL GAP; QUANTUM; STABILITY; QUANTIZATION; CONDUCTANCE;
D O I
10.1007/s00023-020-00959-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a class of UV-regularized two-body interactions for fermions in R-d and prove a Lieb-Robinson estimate for the dynamics of this class of many-body systems. As a step toward this result, we also prove a propagation bound of Lieb-Robinson type for Schrodinger operators. We apply the propagation bound to prove the existence of infinite-volume dynamics as a strongly continuous group of automorphisms on the CAR algebra.
引用
收藏
页码:3609 / 3637
页数:29
相关论文
共 17 条
  • [1] Lieb-Robinson Bounds in Quantum Many-Body Physics
    Nachtergaele, Bruno
    Sims, Robert
    ENTROPY AND THE QUANTUM, 2010, 529 : 141 - +
  • [2] On Lieb-Robinson Bounds for a Class of Continuum Fermions
    Hinrichs, Benjamin
    Lemm, Marius
    Siebert, Oliver
    ANNALES HENRI POINCARE, 2025, 26 (01): : 41 - 80
  • [3] Improved Lieb-Robinson bound for many-body Hamiltonians with power-law interactions
    Else, Dominic, V
    Machado, Francisco
    Nayak, Chetan
    Yao, Norman Y.
    PHYSICAL REVIEW A, 2020, 101 (02)
  • [4] Lieb-Robinson Bounds for Harmonic and Anharmonic Lattice Systems
    Nachtergaele, Bruno
    Raz, Hillel
    Schlein, Benjamin
    Sims, Robert
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 286 (03) : 1073 - 1098
  • [5] Entanglement Hamiltonian of Many-Body Dynamics in Strongly Correlated Systems
    Zhu, W.
    Huang, Zhoushen
    He, Yin-Chen
    Wen, Xueda
    PHYSICAL REVIEW LETTERS, 2020, 124 (10)
  • [6] Quasi-locality bounds for quantum lattice systems. I. Lieb-Robinson bounds, quasi-local maps, and spectral flow automorphisms
    Nachtergaele, Bruno
    Sims, Robert
    Young, Amanda
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (06)
  • [7] Quench dynamics of isolated many-body quantum systems
    Torres-Herrera, E. J.
    Santos, Lea F.
    PHYSICAL REVIEW A, 2014, 89 (04):
  • [8] Interaction-Induced Characteristic Length in Strongly Many-Body Localized Systems
    He, Rong-Qiang
    Lu, Zhong-Yi
    CHINESE PHYSICS LETTERS, 2018, 35 (02)
  • [9] Nonequilibrium steady state for strongly correlated many-body systems: Variational cluster approach
    Knap, Michael
    von der Linden, Wolfgang
    Arrigoni, Enrico
    PHYSICAL REVIEW B, 2011, 84 (11)
  • [10] Stability and dynamics of many-body localized systems coupled to a small bath
    Chiew, Shao-Hen
    Gong, Jiangbin
    Kwek, Leong-Chuan
    Lee, Chee-Kong
    PHYSICAL REVIEW B, 2023, 107 (22)