On strong orthogonality and strictly convex normed linear spaces

被引:14
作者
Paul, Kallol [1 ]
Sain, Debmalya [1 ]
Jha, Kanhaiya [2 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, India
[2] Kathmandu Univ, Sch Sci, Dept Math Sci, Kathmandu, Nepal
关键词
orthogonality; strict convexity; extreme point;
D O I
10.1186/1029-242X-2013-242
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of a strongly orthogonal set relative to an element in the sense of Birkhoff-James in a normed linear space to find a necessary and sufficient condition for an element x of the unit sphere S-X to be an exposed point of the unit ball B-X. We then prove that a normed linear space is strictly convex iff for each element x of the unit sphere, there exists a bounded linear operator A on X which attains its norm only at the points of the form lambda x with lambda is an element of S-K
引用
收藏
页数:7
相关论文
共 50 条
[21]   On the smoothness of normed spaces [J].
Józef Banaś ;
Justyna Ochab ;
Tomasz Zając .
Annals of Functional Analysis, 2024, 15
[22]   On the smoothness of normed spaces [J].
Banas, Jozef ;
Ochab, Justyna ;
Zajac, Tomasz .
ANNALS OF FUNCTIONAL ANALYSIS, 2024, 15 (01)
[23]   FUNCTIONS WITH STRICTLY CONVEX EPIGRAPH [J].
Simon, Stephane ;
Verovic, Patrick .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (03) :795-816
[24]   Remarks on “some fixed point theorems for s-convex subsets in p-normed spaces” [J].
Lu Yu .
The Journal of Analysis, 2024, 32 :1139-1143
[25]   Remarks on "some fixed point theorems for s-convex subsets in p-normed spaces" [J].
Yu, Lu .
JOURNAL OF ANALYSIS, 2024, 32 (02) :1139-1143
[26]   On Bisectors in Minkowski Normed Spaces [J].
Á. G. Horváth .
Acta Mathematica Hungarica, 2000, 89 :233-246
[27]   Angular equivalence of normed spaces [J].
Kikianty, Eder ;
Sinnamon, Gord .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 454 (02) :942-960
[28]   On bisectors in Minkowski normed spaces [J].
Horváth, AG .
ACTA MATHEMATICA HUNGARICA, 2000, 89 (03) :233-246
[29]   Polyhedral approximations of strictly convex compacta [J].
Balashov, Maxim V. ;
Repovs, Dusan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 374 (02) :529-537
[30]   Reflections in strictly convex Minkowski planes [J].
Martini, Horst ;
Spirova, Margarita .
AEQUATIONES MATHEMATICAE, 2009, 78 (1-2) :71-85