On strong orthogonality and strictly convex normed linear spaces

被引:14
|
作者
Paul, Kallol [1 ]
Sain, Debmalya [1 ]
Jha, Kanhaiya [2 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, India
[2] Kathmandu Univ, Sch Sci, Dept Math Sci, Kathmandu, Nepal
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2013年
关键词
orthogonality; strict convexity; extreme point;
D O I
10.1186/1029-242X-2013-242
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of a strongly orthogonal set relative to an element in the sense of Birkhoff-James in a normed linear space to find a necessary and sufficient condition for an element x of the unit sphere S-X to be an exposed point of the unit ball B-X. We then prove that a normed linear space is strictly convex iff for each element x of the unit sphere, there exists a bounded linear operator A on X which attains its norm only at the points of the form lambda x with lambda is an element of S-K
引用
收藏
页数:7
相关论文
共 50 条
  • [1] On strong orthogonality and strictly convex normed linear spaces
    Kallol Paul
    Debmalya Sain
    Kanhaiya Jha
    Journal of Inequalities and Applications, 2013
  • [2] Strictly Convex Space: Strong Orthogonality and Conjugate Diameters
    Sain, Debmalya
    Paul, Kallol
    Jha, Kanhaiya
    JOURNAL OF CONVEX ANALYSIS, 2015, 22 (04) : 1215 - 1225
  • [3] An orthogonality in normed linear spaces based on angular distance inequality
    Dadipour, F.
    Sadeghi, F.
    Salemi, A.
    AEQUATIONES MATHEMATICAE, 2016, 90 (02) : 281 - 297
  • [4] An orthogonality in normed linear spaces based on angular distance inequality
    F. Dadipour
    F. Sadeghi
    A. Salemi
    Aequationes mathematicae, 2016, 90 : 281 - 297
  • [5] VARIOUS NOTIONS OF ORTHOGONALITY IN NORMED SPACES
    Okelo, N. B.
    Agure, J. O.
    Oleche, P. O.
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (05) : 1387 - 1397
  • [6] VARIOUS NOTIONS OF ORTHOGONALITY IN NORMED SPACES
    N.B.OKELO
    J.O.AGURE
    P.O.OLECHE
    ActaMathematicaScientia, 2013, 33 (05) : 1387 - 1397
  • [7] Orthogonality in smooth countably normed spaces
    Sarah Tawfeek
    Nashat Faried
    H. A. El-Sharkawy
    Journal of Inequalities and Applications, 2021
  • [8] The orthogonality in the locally convex spaces
    Mazaheri, H.
    Kazemi, R.
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (05): : 1101 - 1106
  • [9] Residuality Properties of Certain Classes of Convex Functions on Normed Linear Spaces
    Barshad, Kay
    Reich, Simeon
    Zaslavski, Alexander J.
    JOURNAL OF CONVEX ANALYSIS, 2022, 29 (03) : 795 - 806
  • [10] ON b-ORTHOGONALITY IN 2-NORMED SPACES
    Gozali, S. M.
    Gunawan, H.
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2010, 16 (02) : 127 - 132