Unbiased tensor-based morphometry: Improved robustness and sample size estimates for Alzheimer's disease clinical trials

被引:89
作者
Hua, Xue [1 ]
Hibar, Derrek P. [1 ]
Ching, Christopher R. K. [1 ]
Boyle, Christina P. [1 ]
Rajagopalan, Priya [1 ]
Gutman, Boris A. [1 ]
Leow, Alex D. [2 ,3 ]
Toga, Arthur W. [1 ]
Jack, Clifford R., Jr. [4 ]
Harvey, Danielle [5 ]
Weiner, Michael W. [6 ,7 ,8 ]
Thompson, Paul M. [1 ,9 ]
机构
[1] Univ Calif Los Angeles, Sch Med, Imaging Genet Ctr, Lab Neuro Imaging,Dept Neurol, Los Angeles, CA 90095 USA
[2] Univ Illinois, Coll Med, Dept Psychiat, Chicago, IL USA
[3] Univ Illinois, Dept Bioengn, Chicago, IL USA
[4] Mayo Clin, Rochester, MN USA
[5] UC Davis Sch Med, Dept Publ Hlth Sci, Davis, CA USA
[6] UC San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA USA
[7] UC San Francisco, Dept Med, San Francisco, CA USA
[8] UC San Francisco, Dept Psychiat, San Francisco, CA USA
[9] Univ Calif Los Angeles, Sch Med, Semel Inst, Dept Psychiat, Los Angeles, CA 90095 USA
基金
加拿大健康研究院; 美国国家卫生研究院;
关键词
Alzheimer's disease; Mild cognitive impairment; Aging; ADNI; Tensor-based morphometry; Drug trial; MILD COGNITIVE IMPAIRMENT; VOXEL-BASED MORPHOMETRY; HIPPOCAMPAL VOLUME; IMAGE REGISTRATION; MYELIN BREAKDOWN; MR-IMAGES; BRAIN; ALLELE; PROGRESSION; BIOMARKER;
D O I
10.1016/j.neuroimage.2012.10.086
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Various neuroimaging measures are being evaluated for tracking Alzheimer's disease (AD) progression in therapeutic trials, including measures of structural brain change based on repeated scanning of patients with magnetic resonance imaging (MRI). Methods to compute brain change must be robust to scan quality. Biases may arise if any scans are thrown out, as this can lead to the true changes being overestimated or underestimated. Here we analyzed the full MRI dataset from the first phase of Alzheimer's Disease Neuroimaging Initiative (ADNI-1) from the first phase of Alzheimer's Disease Neuroimaging Initiative (ADNI-1) and assessed several sources of bias that can arise when tracking brain changes with structural brain imaging methods, as part of a pipeline for tensor-based morphometry (TBM). In all healthy subjects who completed MRI scanning at screening, 6, 12, and 24 months, brain atrophy was essentially linear with no detectable bias in longitudinal measures. In power analyses for clinical trials based on these change measures, only 39 AD patients and 95 mild cognitive impairment (MCI) subjects were needed for a 24-month trial to detect a 25% reduction in the average rate of change using a two-sided test (alpha=0.05, power=80%). Further sample size reductions were achieved by stratifying the data into Apolipoprotein E (ApoE) epsilon 4 carriers versus non-carriers. We show how selective data exclusion affects sample size estimates, motivating an objective comparison of different analysis techniques based on statistical power and robustness. TBM is an unbiased, robust, high-throughput imaging surrogate marker for large, multi-site neuroimaging studies and clinical trials of AD and MCI. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:648 / 661
页数:14
相关论文
共 88 条
[11]  
CARMICHAEL OT, 2006, 315318 IEEE ISBI
[12]  
Chen K, 2009, ADNI DAT M SEATTL WA
[13]   Twelve-month metabolic declines in probable Alzheimer's disease and amnestic mild cognitive impairment assessed using an empirically pre-defined statistical region-of-interest: Findings from the Alzheimer's Disease Neuroimaging Initiative [J].
Chen, Kewei ;
Langbaum, Jessica B. S. ;
Fleisher, Adam S. ;
Ayutyanont, Napatkamon ;
Reschke, Cole ;
Lee, Wendy ;
Liu, Xiaofen ;
Bandy, Dan ;
Alexander, Gene E. ;
Thompson, Paul M. ;
Foster, Norman L. ;
Harvey, Danielle J. ;
de Leon, Mony J. ;
Koeppe, Robert A. ;
Jagust, William J. ;
Weiner, Michael W. ;
Reiman, Eric M. .
NEUROIMAGE, 2010, 51 (02) :654-664
[14]   Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI:: A longitudinal MRI study [J].
Chételat, G ;
Landeau, B ;
Eustache, F ;
Mézenge, F ;
Viader, F ;
de la Sayette, V ;
Desgranges, B ;
Baron, JC .
NEUROIMAGE, 2005, 27 (04) :934-946
[15]  
Ching CRK, 2012, 2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), P1172, DOI 10.1109/ISBI.2012.6235769
[16]   Automated ventricular mapping alignment reveals genetic effects with multi-atlas fluid image in Alzheimer's disease [J].
Chou, Yi-Yu ;
Lepore, Natasha ;
de Zubicaray, Greig I. ;
Cannichael, Owen T. ;
Becker, James T. ;
Toga, Arthur W. ;
Thompson, Paul M. .
NEUROIMAGE, 2008, 40 (02) :615-630
[17]   Mapping correlations between ventricular expansion and CSF amyloid and tau biomarkers in 240 subjects with Alzheimer's disease, mild cognitive impairment and elderly controls [J].
Chou, Yi-Yu ;
Lepore, Natasha ;
Avedissian, Christina ;
Madsen, Sarah K. ;
Parikshak, Neelroop ;
Hua, Xue ;
Shaw, Leslie M. ;
Trojanowski, John Q. ;
Weiner, Michael W. ;
Toga, Arthur W. ;
Thompson, Paul M. .
NEUROIMAGE, 2009, 46 (02) :394-410
[18]   Consistent image registration [J].
Christensen, GE ;
Johnson, HJ .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (07) :568-582
[19]   A unified statistical approach to deformation-based morphometry [J].
Chung, MK ;
Worsley, KJ ;
Paus, T ;
Cherif, C ;
Collins, DL ;
Giedd, JN ;
Rapoport, JL ;
Evanst, AC .
NEUROIMAGE, 2001, 14 (03) :595-606
[20]   Comparison of phantom and registration scaling corrections using the ADNI cohort [J].
Clarkson, Matthew J. ;
Ourselin, Sebastien ;
Nielsen, Casper ;
Leung, Kelvin K. ;
Barnes, Josephine ;
Whitwell, Jennifer L. ;
Gunter, Jeffrey L. ;
Hill, Derek L. G. ;
Weiner, Michael W. ;
Jack, Clifford R., Jr. ;
Fox, Nick C. .
NEUROIMAGE, 2009, 47 (04) :1506-1513