NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS

被引:1
作者
Al-Dolat, Mohammed [1 ]
Al-Zoubi, Khaldoun [1 ]
机构
[1] Jordan Univ Sci & Technol, Dept Math & Stat, POB 3030, Irbid 22110, Jordan
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2016年 / 10卷 / 04期
关键词
Numerical radius; operator norm;
D O I
10.7153/jmi-10-83
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we give several inequalities involving powers numerical radii and the usual operator norms of Hilbert space operators. In particular, if A(i), B-i and X-i are bounded linear operators (i = 1,2, ... , n is an element of N), then we estimate the norm as well as the numerical radius to Sigma(n)(i=1) X(i)A(i)(m)B(i) for some m is an element of N.
引用
收藏
页码:1041 / 1049
页数:9
相关论文
共 11 条
[1]   ESTIMATES FOR THE NUMERICAL RADIUS AND THE SPECTRAL RADIUS OF THE FROBENIUS COMPANION MATRIX AND BOUNDS FOR THE ZEROS OF POLYNOMIALS [J].
Abu-Omar, Amer ;
Kittaneh, Fuad .
ANNALS OF FUNCTIONAL ANALYSIS, 2014, 5 (01) :56-62
[2]  
Bhatia R., 1997, Matrix Analysis
[3]  
Dragomir S. S., 2009, SARAJEVO J MATH, V5, P269
[4]   A SURVEY OF SOME RECENT INEQUALITIES FOR THE NORM AND NUMERICAL RADIUS OF OPERATORS IN HILBERT SPACES [J].
Dragomir, Sever S. .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2007, 1 (02) :154-175
[5]   Numerical radius inequalities for Hilbert space operators. II [J].
El-Haddad, Mohammad ;
Kittaneh, Fuad .
STUDIA MATHEMATICA, 2007, 182 (02) :133-140
[6]  
FONG C., CAN J MATH, V135, P274
[7]  
Gustafson K. E., 1997, NUMERICAL RANGE FIEL
[8]  
Halmos P. R., 1982, HILBERT SPACE PROBLE
[9]  
Hardy G.H., 1988, INEQUALITIES
[10]   Numerical radius inequalities for Hilbert space operators [J].
Kittaneh, F .
STUDIA MATHEMATICA, 2005, 168 (01) :73-80