On the Truly Meshless Solution of Heat Conduction Problems in Heterogeneous Media

被引:24
作者
Fang, Jiannong [1 ]
Zhao, Gao-Feng [2 ]
Zhao, Jian [2 ]
Parriaux, Aurele
机构
[1] Ecole Polytech Fed Lausanne, ENAC ICARE GEOLEP, Stn 18, Engn & Environm Geol Lab, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Rock Mech Lab, CH-1015 Lausanne, Switzerland
关键词
FINITE POINT METHOD; DIFFUSE APPROXIMATION; FLUID-FLOW; MECHANICS;
D O I
10.1080/10407790802605067
中图分类号
O414.1 [热力学];
学科分类号
摘要
A truly meshless method based on the weighted least-squares (WLS) approximation and the method of point collocation is proposed to solve heat conduction problems in heterogeneous media. It is shown that, in the case of strong heterogeneity, accurate and smooth solutions for temperature and heat flux can be obtained by applying the WLS approximation in each homogeneous domain and using a double-stage WLS approximation technique together with a proper neighbor selection criterion at each interface.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 15 条
[1]  
BELYTSCHKO T, 1992, COMPUT MECH, V37, P229
[2]   A regularized Lagrangian finite point method for the simulation of incompressible viscous flows [J].
Fang, Jiannong ;
Parriaux, Aurele .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (20) :8894-8908
[3]   THE FINITE-DIFFERENCE METHOD AT ARBITRARY IRREGULAR GRIDS AND ITS APPLICATION IN APPLIED MECHANICS [J].
LISZKA, T ;
ORKISZ, J .
COMPUTERS & STRUCTURES, 1980, 11 (1-2) :83-95
[4]   A finite point method for compressible flow [J].
Löhner, R ;
Sacco, C ;
Oñate, E ;
Idelsohn, S .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 53 (08) :1765-1779
[5]  
Onate E, 1996, INT J NUMER METH ENG, V39, P3839, DOI 10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO
[6]  
2-R
[7]   A stabilized finite point method for analysis of fluid mechanics problems [J].
Onate, E ;
Idelsohn, S ;
Zienkiewicz, OC ;
Taylor, RL ;
Sacco, C .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 139 (1-4) :315-346
[8]  
Onate E., 2000, Computing and Visualization in Science, V3, P67, DOI 10.1007/s007910050053
[9]   A finite point method for elasticity problems [J].
Oñate, E ;
Perazzo, F ;
Miquel, J .
COMPUTERS & STRUCTURES, 2001, 79 (22-25) :2151-2163
[10]   An improved finite point method for tridimensional potential flows [J].
Ortega, Enrique ;
Onate, Eugenio ;
Idelsohn, Sergio .
COMPUTATIONAL MECHANICS, 2007, 40 (06) :949-963