Similarity Reduction and Exact Solutions of a Boussinesq-like Equation

被引:8
|
作者
Zhang, Bo [1 ]
Hu, Hengchun [1 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2018年 / 73卷 / 04期
基金
中国国家自然科学基金;
关键词
Boussinesq-like Equation; Clarkson and Kruskal Direct Method; Group Invariant Solutions; Lie Symmetry Analysis; Similarity Reduction; LIE SYMMETRY ANALYSIS; NONLINEAR SCHRODINGER-EQUATION; JIMBO-MIWA EQUATION; DARBOUX TRANSFORMATION; BELL-POLYNOMIALS; SYSTEM; WAVES;
D O I
10.1515/zna-2017-0442
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The similarity reduction and similarity solutions of a Boussinesq-like equation are obtained by means of Clarkson and Kruskal (CK) direct method. By using Lie symmetry method, we also obtain the similarity reduction and group invariant solutions of the model. Further, we compare the results obtained by the CK direct method and Lie symmetry method, and we demonstrate the connection of the two methods.
引用
收藏
页码:357 / 362
页数:6
相关论文
共 50 条
  • [21] Integral approach to compacton solutions of Boussinesq-like B(m, n) equation with fully nonlinear dispersion
    Liu, ZR
    Lin, QM
    Li, QX
    CHAOS SOLITONS & FRACTALS, 2004, 19 (05) : 1071 - 1081
  • [22] VARIATIONAL PRINCIPLES FOR FRACTAL BOUSSINESQ-LIKE B(m,n) EQUATION
    Wang, Yan
    Gepreel, Khaled A.
    Yang, Yong-Ju
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (07)
  • [23] Soliton solutions for Boussinesq-like equations with spatio-temporal dispersion
    Darvishi, M. T.
    Najafi, M.
    Wazwaz, A. M.
    OCEAN ENGINEERING, 2017, 130 : 228 - 240
  • [24] Exact traveling wave solutions of the Boussinesq equation
    Ding, SS
    Zhao, XQ
    CHAOS SOLITONS & FRACTALS, 2006, 29 (04) : 1032 - 1036
  • [25] Hyperbolic rational solutions to a variety of conformable fractional Boussinesq-Like equations
    Rezazadeh, Hadi
    Osman, M. S.
    Eslami, Mostafa
    Mirzazadeh, Mohammad
    Zhou, Qin
    Badri, Seyed Amin
    Korkmaz, Alper
    NONLINEAR ENGINEERING - MODELING AND APPLICATION, 2019, 8 (01): : 224 - 230
  • [26] New solutions of the fractional Boussinesq-like equations by means of conformable derivatives
    Korpinar, Z.
    Tchier, F.
    Inc, M.
    Ragoub, L.
    Bayram, M.
    RESULTS IN PHYSICS, 2019, 13
  • [27] NEW SIMILARITY SOLUTIONS FOR THE MODIFIED BOUSSINESQ EQUATION
    CLARKSON, PA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (13): : 2355 - 2367
  • [28] FRACTAL SOLITARY WAVE SOLUTIONS FOR FRACTAL NONLINEAR DISPERSIVE BOUSSINESQ-LIKE MODELS
    Wang, Kangle
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (04)
  • [29] Construction of exact solitary solutions for Boussinesq-like B(m,n) equations with fully nonlinear dispersion by the decomposition method
    Zhu, YG
    Chang, QS
    Wu, SC
    CHAOS SOLITONS & FRACTALS, 2005, 26 (03) : 897 - 903
  • [30] New exact special solutions with solitary patterns for Boussinesq-like B(m,n) equations with fully nonlinear dispersion
    Shang, YD
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 173 (02) : 1137 - 1148