Enhancement of the photocatalytic efficiency of WO3 nanoparticles via hydrogen plasma treatment

被引:83
作者
Rahimnejad, Sara [1 ,2 ,3 ]
He, Jing Hui [1 ,2 ]
Pan, Feng [1 ,2 ]
Lee, Xue'er [1 ]
Chen, Wei [1 ,2 ,4 ]
Wu, Kai [2 ,5 ]
Xu, Guo Qin [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Chem, 3 Sci Dr 3, Singapore 117543, Singapore
[2] SPURc, Singapore 138602, Singapore
[3] Islamic Azad Univ, Yadegar E Imam Khomeini RAH Branch, Dept Chem, Tehran 18155144, Iran
[4] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[5] Peking Univ, Coll Chem & Mol Engn, State Key Lab Struct Chem Unstable & Stable Speci, Beijing 100871, Peoples R China
基金
新加坡国家研究基金会;
关键词
photocatalytic; WO3; hydrogen plasma; Oxygen vacancy; O-2; evolution; WATER; TIO2; FILMS; NANOSTRUCTURES; EVOLUTION; OXIDES; ZNO;
D O I
10.1088/2053-1591/1/4/045044
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Surface defect engineering is able to effectively enhance the photocatalytic performance of WO3 nanoparticles. In this paper, radio frequency hydrogen plasma was employed to create surface defects on WO3 nanoparticles. X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) analysis confirmed that hydrogen plasma modification increases the density of oxygen vacancies on the surface of WO3. The broadening of characteristic WO3 peaks in Raman spectra indicates the increase of oxygen vacancies by increasing voltage in hydrogen plasma treatment. The sample treated with hydrogen plasma at 20 volts shows enhancement in photocurrent density by an order of magnitude, attributable to the band-gap narrowing and subsequent increase of quantum yield in the visible range. Consistent results were also obtained from photocatalytic O-2 evolution from water oxidation.
引用
收藏
页数:12
相关论文
共 43 条
[1]   Pristine simple oxides as visible light driven photocatalysts: Highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide [J].
Abe, Ryu ;
Takami, Hiticishi ;
Murakami, Naoya ;
Ohtani, Bunsho .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (25) :7780-+
[2]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[3]   Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures [J].
Baker, David R. ;
Kamat, Prashant V. .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (05) :805-811
[4]   High photocurrent conversion efficiency in self-organized porous WO3 [J].
Berger, S. ;
Tsuchiya, H. ;
Ghicov, A. ;
Schmuki, P. .
APPLIED PHYSICS LETTERS, 2006, 88 (20)
[5]   Enhanced conductivity of aluminum doped ZnO films by hydrogen plasma treatment [J].
Chang, H. P. ;
Wang, F. H. ;
Wu, J. Y. ;
Kung, C. Y. ;
Liu, H. W. .
THIN SOLID FILMS, 2010, 518 (24) :7445-7449
[6]   Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals [J].
Chen, Xiaobo ;
Liu, Lei ;
Yu, Peter Y. ;
Mao, Samuel S. .
SCIENCE, 2011, 331 (6018) :746-750
[7]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570
[8]   Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols [J].
Chen, Zhebo ;
Jaramillo, Thomas F. ;
Deutsch, Todd G. ;
Kleiman-Shwarsctein, Alan ;
Forman, Arnold J. ;
Gaillard, Nicolas ;
Garland, Roxanne ;
Takanabe, Kazuhiro ;
Heske, Clemens ;
Sunkara, Mahendra ;
McFarland, Eric W. ;
Domen, Kazunari ;
Miller, Eric L. ;
Turner, John A. ;
Dinh, Huyen N. .
JOURNAL OF MATERIALS RESEARCH, 2010, 25 (01) :3-16
[9]   Efficient Photoelectrochemical Water Splitting by Anodically Grown WO3 Electrodes [J].
Cristino, Vito ;
Caramori, Stefano ;
Argazzi, Roberto ;
Meda, Laura ;
Marra, Gian Luigi ;
Bignozzi, Carlo Alberto .
LANGMUIR, 2011, 27 (11) :7276-7284
[10]   Dye-sensitizer effects on a Pt/KTa(Zr)O3 catalyst for the photocatalytic splitting of water [J].
Hagiwara, H ;
Ono, N ;
Inoue, T ;
Matsumoto, H ;
Ishihara, T .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (09) :1420-1422