A temporal decomposition method for identifying venous effects in task-based fMRI

被引:23
作者
Kay, Kendrick [1 ]
Jamison, Keith W. [1 ,4 ]
Zhang, Ru-Yuan [1 ,2 ,3 ]
Ugurbil, Kamil [1 ]
机构
[1] Univ Minnesota, Dept Radiol, Ctr Magnet Resonance Res, Minneapolis, MN 55455 USA
[2] Shanghai Jiao Tong Univ, Shanghai Mental Hlth Ctr, Shanghai Key Lab Psychot Disorders, Sch Med, Shanghai, Peoples R China
[3] Shanghai Jiao Tong Univ, Inst Psychol & Behav Sci, Shanghai, Peoples R China
[4] Weill Cornell Med, Dept Radiol, New York, NY USA
基金
美国国家卫生研究院;
关键词
HUMAN VISUAL-CORTEX; INDUCED SIGNAL CHANGES; BOLD-FMRI; NEURONAL-ACTIVITY; OCULAR DOMINANCE; NEGATIVE BOLD; GRADIENT; BRAIN; MODEL; MRI;
D O I
10.1038/s41592-020-0941-6
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The spatial resolution of functional magnetic resonance imaging (fMRI) is fundamentally limited by effects from large draining veins. Here we describe an analysis method that provides data-driven estimates of these effects in task-based fMRI. The method involves fitting a one-dimensional manifold that characterizes variation in response timecourses observed in a given dataset, and then using identified early and late timecourses as basis functions for decomposing responses into components related to the microvasculature (capillaries and small venules) and the macrovasculature (large veins), respectively. We show the removal of late components substantially reduces the superficial cortical depth bias of fMRI responses and helps eliminate artifacts in cortical activity maps. This method provides insight into the origins of the fMRI signal and can be used to improve the spatial accuracy of fMRI. Temporal decomposition through manifold fitting (TDM) is an analysis technique that decomposes blood oxygenation level dependent (BOLD) responses in task-based fMRI into different components that likely correspond to microvasculature- and macrovasculature-driven signals.
引用
收藏
页码:1033 / +
页数:20
相关论文
共 65 条
  • [1] The Human Connectome Project 7 Tesla retinotopy dataset: Description and population receptive field analysis
    Benson, Noah C.
    Jamison, Keith W.
    Arcaro, Michael J.
    Vu, An T.
    Glasser, Matthew F.
    Coalson, Timothy S.
    Van Essen, David C.
    Yacoub, Essa
    Ugurbil, Kamil
    Winawer, Jonathan
    Kay, Kendrick
    [J]. JOURNAL OF VISION, 2018, 18 (13): : 1 - 22
  • [2] Negative BOLD-fMRI signals in large cerebral veins
    Bianciardi, Marta
    Fukunaga, Masaki
    van Gelderen, Peter
    de Zwart, Jacco A.
    Duyn, Jeff H.
    [J]. JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2011, 31 (02) : 401 - 412
  • [3] The psychophysics toolbox
    Brainard, DH
    [J]. SPATIAL VISION, 1997, 10 (04): : 433 - 436
  • [4] GLMdenoise improves multivariate pattern analysis of fMRI data
    Charest, Ian
    Kriegeskorte, Nikolaus
    Kay, Kendrick N.
    [J]. NEUROIMAGE, 2018, 183 : 606 - 616
  • [5] Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging
    Cheng, K
    Waggoner, RA
    Tanaka, K
    [J]. NEURON, 2001, 32 (02) : 359 - 374
  • [6] Exploration of human visual cortex using high spatial resolution functional magnetic resonance imaging
    Cheng, Kang
    [J]. NEUROIMAGE, 2018, 164 : 4 - 9
  • [7] Identification of cerebral networks by classification of the shape of BOLD responses
    d'Avossa, G
    Shulman, GL
    Corbetta, M
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2003, 90 (01) : 360 - 371
  • [8] Dale AM, 1999, HUM BRAIN MAPP, V8, P109, DOI 10.1002/(SICI)1097-0193(1999)8:2/3<109::AID-HBM7>3.0.CO
  • [9] 2-W
  • [10] The impact of ultra-high field MRI on cognitive and computational neuroimaging
    De Martino, Federico
    Yacoub, Essa
    Kemper, Valentin
    Moerel, Michelle
    Uludag, Kamil
    De Weerd, Peter
    Ugurbil, Kamil
    Goebel, Rainer
    Formisano, Elia
    [J]. NEUROIMAGE, 2018, 168 : 366 - 382