Effects of irrigation and wide-precision planting on water use, radiation interception, and grain yield of winter wheat in the North China Plain

被引:80
|
作者
Zhao Dandan [1 ]
Shen Jiayin [1 ]
Lang Kun [1 ]
Liu Quanru [1 ]
Li Quanqi [1 ]
机构
[1] Shandong Agr Univ, Coll Water Conservancy & Civil Engn, Tai An, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Wide-precision planting; Irrigation; Winter wheat; Water use; PAR capture ratio; Dry matter accumulation; Grain yield; USE EFFICIENCY; BIOMASS ACCUMULATION; GROWTH; PATTERNS;
D O I
10.1016/j.agwat.2012.11.019
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
To develop a water-saving planting pattern in the North China Plain, in the 2010-2011 and 2011-2012 winter wheat growing seasons, 2 types of planting patterns (wide-precision planting and conventional-cultivation planting) and 3 different irrigation treatments (60.0-mm irrigation at both jointing and heading stages, 60.0-mm irrigation at only the jointing stage, and no irrigation at any time during the growing season) were conducted. These methods were used to study the effects of irrigation and wide-precision planting on water use, leaf area index (LAI), photosynthetically active radiation (PAR) capture ratio, dry matter accumulation, and grain yield of winter wheat. The results indicated that after 60.0 mm irrigation at the jointing and heading stages of winter wheat, the soil water content and the LAI from the wide-precision planting were higher than those from the conventional-cultivation planting late in the growing seasons. The PAR capture ratios at 40 and 60 cm above the ground in the wide-precision planting were higher than those in the conventional-cultivation planting. At the milking stage, the wide-precision planting with 60.0-mm irrigation at both the jointing and heading stages had significantly (LSD, P< 0.05) high dry matter accumulation. Compared to the conventional-cultivation planting, the wide-precision planting with 60.0-mm irrigation at both jointing and heading stages had the highest grain yield, which can be attributed to increased spike numbers. The results indicate that the wide-precision planting with 60.0-mm irrigation at both the jointing and heading stages of winter wheat should be extended in the North China Plain. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:87 / 92
页数:6
相关论文
共 50 条
  • [1] Winter wheat grain yield and water use efficiency in wide-precision planting pattern under deficit irrigation in North China Plain
    Li, Quanqi
    Bian, Chengyue
    Liu, Xinhui
    Ma, Changjian
    Liu, Quanru
    AGRICULTURAL WATER MANAGEMENT, 2015, 153 : 71 - 76
  • [2] Effect of irrigation amount and stage on yield and quality of winter wheat under wide-precision planting pattern
    Han, Huifang
    Zhao, Dandan
    Shen, Jiayin
    Lang, Kun
    Liu, Quanru
    Li, Quanqi
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2013, 29 (14): : 109 - 114
  • [3] Effects of irrigation and planting patterns on radiation use efficiency and yield of winter wheat in North China
    Li Quanqi
    Chen Yuhai
    Liu Mengyu
    Zhou Xunbo
    Yu Songlie
    Dong Baodi
    AGRICULTURAL WATER MANAGEMENT, 2008, 95 (04) : 469 - 476
  • [4] Yield and water use response of winter wheat to winter irrigation in the North China Plain
    Shao, L. W.
    Zhang, X. Y.
    Sun, H. Y.
    Chen, S. Y.
    Wang, Y. M.
    JOURNAL OF SOIL AND WATER CONSERVATION, 2011, 66 (02) : 104 - 113
  • [5] Grain yield and water use of winter wheat as affected by water and sulfur supply in the North China Plain
    Xie Ying-xin
    Zhang Hui
    Zhu Yun-ji
    Zhao Li
    Yang Jia-heng
    Cha Fei-na
    Liu Cao
    Wang Chen-yang
    Guo Tian-cai
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2017, 16 (03) : 614 - 625
  • [6] Effects of supplemental irrigation on grain yield and water and nitrogen efficiencies of winter wheat in the North China Plain
    Zhao, Jinke
    Xu, Yufan
    Xu, Xuexin
    Liu, Shuai
    Hao, Tianjia
    Qu, Wenkai
    Li, Mingrui
    Shi, Yan
    Zhao, Changxing
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2023, 103 (15) : 7484 - 7493
  • [7] Yield and water use responses of winter wheat to irrigation and nitrogen application in the North China Plain
    Zhang Ming-ming
    Dong Bao-di
    Qiao Yun-zhou
    Shi Chang-hai
    Yang Hong
    Wang Ya-kai
    Liu Meng-yu
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2018, 17 (05) : 1194 - 1206
  • [8] Assessing the effects of precipitation and irrigation on winter wheat yield and water productivity in North China Plain
    Zeng, Ruiyun
    Yao, Fengmei
    Zhang, Sha
    Yang, Shanshan
    Bai, Yun
    Zhang, Jiahua
    Wang, Jingwen
    Wang, Xin
    AGRICULTURAL WATER MANAGEMENT, 2021, 256
  • [9] Grain yield and water use of winter wheat as affected by water and sulfur supply in the North China Plain
    XIE Ying-xin
    ZHANG Hui
    ZHU Yun-ji
    ZHAO Li
    YANG Jia-heng
    CHA Fei-na
    LIU Cao
    WANG Chen-yang
    GUO Tian-cai
    JournalofIntegrativeAgriculture, 2017, 16 (03) : 614 - 625
  • [10] Response of winter wheat grain yield and water use efficiency to deficit irrigation in the North China Plain
    Han, Huifang
    Ren, Yujie
    Gao, Chao
    Yan, Zhenxing
    Li, Quanqi
    EMIRATES JOURNAL OF FOOD AND AGRICULTURE, 2017, 29 (12): : 971 - 977