Optimal Information Rate of Secret Sharing Schemes on Trees

被引:18
|
作者
Csirmaz, Laszlo [1 ]
Tardos, Gabor [2 ,3 ]
机构
[1] Cent European Univ, H-1051 Budapest, Hungary
[2] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada
[3] Renyi Inst Mat, H-1053 Budapest, Hungary
基金
加拿大自然科学与工程研究理事会; 匈牙利科学研究基金会;
关键词
Entropy method; fractional packing and cover; graph; information rate; secret sharing scheme; CONSTRUCTIONS;
D O I
10.1109/TIT.2012.2236958
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The information rate for an access structure is the reciprocal of the load of the optimal secret sharing scheme for this structure. We determine this value for all trees: it is (2 - 1/c)(-1), where is the size of the largest core of the tree. A subset of the vertices of a tree is a core if it induces a connected subgraph and for each vertex in the subset one finds a neighbor outside the subset. Our result follows from a lower and an upper bound on the information rate that applies for any graph and happen to coincide for trees because of a correspondence between the size of the largest core and a quantity related to a fractional cover of the tree with stars.
引用
收藏
页码:2527 / 2530
页数:4
相关论文
共 50 条
  • [1] Efficient Secret Sharing Schemes Achieving Optimal Information Rate
    Wang, Yongge
    Desmedt, Yvo
    2014 IEEE INFORMATION THEORY WORKSHOP (ITW), 2014, : 516 - 520
  • [2] On the information rate of secret sharing schemes
    Blundo, C
    DeSantis, A
    Gargano, L
    Vaccaro, U
    THEORETICAL COMPUTER SCIENCE, 1996, 154 (02) : 283 - 306
  • [3] On the information rate of secret sharing schemes
    Universita di Salerno, Baronissi, Italy
    Theor Comput Sci, 2 (283-306):
  • [4] On the information rate of perfect secret sharing schemes
    van, Dijk, Marten
    Designs, Codes, and Cryptography, 1995, 6 (02):
  • [5] Tight Bounds on the Information Rate of Secret Sharing Schemes
    Carlo Blundo
    Alfredo De Santis
    Roberto De Simone
    Ugo Vaccaro
    Designs, Codes and Cryptography, 1997, 11 (2) : 107 - 110
  • [6] NEW BOUNDS ON THE INFORMATION RATE OF SECRET SHARING SCHEMES
    BIUNDO, C
    DESANTIS, A
    GAGGIA, AG
    VACCARO, U
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (02) : 549 - 554
  • [7] Local bounds for the optimal information ratio of secret sharing schemes
    Farras, Oriol
    Ribes-Gonzalez, Jordi
    Ricci, Sara
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (06) : 1323 - 1344
  • [8] Local bounds for the optimal information ratio of secret sharing schemes
    Oriol Farràs
    Jordi Ribes-González
    Sara Ricci
    Designs, Codes and Cryptography, 2019, 87 : 1323 - 1344
  • [9] The optimal information rate of quantum-secret-sharing schemes based on at most four participants
    Song, Yun
    Li, Zhi-Hui
    Li, Yong-Ming
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (10): : 1951 - 1956
  • [10] Bounds on the information rate of quantum-secret-sharing schemes
    Sarvepalli, Pradeep
    PHYSICAL REVIEW A, 2011, 83 (04):