Existence of a periodic mild solution for a nonlinear fractional differential equation

被引:13
作者
Herzallah, Mohamed A. E. [2 ,3 ]
Baleanu, Dumitru [1 ,4 ]
机构
[1] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[2] Zagazig Univ, Fac Sci, Zagazig, Egypt
[3] Majmaah Univ, Coll Sci Zulfi, Al Majmaah, Saudi Arabia
[4] Inst Space Sci, R-76900 Magurele, Romania
基金
英国自然环境研究理事会;
关键词
Fractional derivative; Fractional nonlinear differential equations; Boundary value problem; Schaefer fixed point theorem;
D O I
10.1016/j.camwa.2011.12.060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this manuscript is to analyze the existence of a periodic mild solution to the problem of the following nonlinear fractional differential equation (R)(0)D(t)(alpha)u(t) - lambda u(t) = f(t, u(t)), u(0) = u(1) = 0, 1 < alpha < 2, lambda is an element of R, where D-R(0)t(alpha), denotes the Riemann-Liouville fractional derivative. We obtained the expressions of the general solution for the linear fractional differential equation by making use of the Laplace and inverse Laplace transforms. By making use of the Banach contraction mapping principle and the Schaefer fixed point theorem, the existence results of one or at least one mild solution for a nonlinear fractional differential equation were given. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3059 / 3064
页数:6
相关论文
共 14 条
[1]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[2]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[3]  
[Anonymous], 2006, Journal of the Electrochemical Society
[4]  
Baleanu D., 2012, Fractional calculus: models and numerical methods
[5]   Asymptotically Linear Solutions for Some Linear Fractional Differential Equations [J].
Baleanu, Dumitru ;
Mustafa, Octavian G. ;
Agarwal, Ravi P. .
ABSTRACT AND APPLIED ANALYSIS, 2010,
[6]   An existence result for a superlinear fractional differential equation [J].
Baleanu, Dumitru ;
Mustafa, Octavian G. ;
Agarwal, Ravi P. .
APPLIED MATHEMATICS LETTERS, 2010, 23 (09) :1129-1132
[7]   Existence of Periodic Solution for a Nonlinear Fractional Differential Equation [J].
Belmekki, Mohammed ;
Nieto, Juan J. ;
Rodriguez-Lopez, Rosana .
BOUNDARY VALUE PROBLEMS, 2009,
[8]  
Carpinteri A., 1997, Fractals and Fractional Calculus in Continuum Mechanics
[9]  
Magin Richard L., 2004, Critical Reviews in Biomedical Engineering, V32, P1, DOI 10.1615/CritRevBiomedEng.v32.10
[10]  
Miller K.S., 1993, INTRO FRACTIONAL INT