An Integral Form of the Nonlinear Schrodinger Equation with Variable Coefficients

被引:0
作者
Suazo, Erwin [1 ]
Suslov, Sergei K. [2 ]
机构
[1] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, 1201 W Univ Dr, Edinburg, TX 78539 USA
[2] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
来源
2018 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS-TOYAMA) | 2018年
关键词
PARTICLE; PROPAGATOR;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We discuss an integral form of the Cauchy initial value problem for the nonlinear Schrodinger equation with variable coefficients. Some special and limiting cases are outlined. For the linear case the inverse of the time evolution operators and estimates in the supremum norm are established.
引用
收藏
页码:1214 / 1220
页数:7
相关论文
共 28 条
[1]  
[Anonymous], 1988, Special functions of mathematical physics
[2]  
[Anonymous], 2010, Quantum mechanics and path integrals, DOI 10.1063/1.3048320
[3]  
[Anonymous], 2003, Quantum Mechanics: Fundamentals
[4]  
[Anonymous], 1980, Introduction to the theory of quantized fields
[5]   More on the quantum propagator of a particle in a linear potential [J].
Arrighini, GP ;
Durante, NL ;
Guidotti, C .
AMERICAN JOURNAL OF PHYSICS, 1996, 64 (08) :1036-1041
[6]   PROPAGATORS IN NONRELATIVISTIC QUANTUM MECHANICS [J].
BEAUREGARD, LA .
AMERICAN JOURNAL OF PHYSICS, 1966, 34 (04) :324-+
[7]   The power of a good idea:: Quantitative modeling of the spread of ideas from epidemiological models [J].
Bettencourt, LMA ;
Cintrón-Arias, A ;
Kaiser, DI ;
Castillo-Chávez, C .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 364 :513-536
[8]   PATH-INTEGRAL FOR THE MOTION OF A PARTICLE IN A LINEAR POTENTIAL [J].
BROWN, LS ;
ZHANG, Y .
AMERICAN JOURNAL OF PHYSICS, 1994, 62 (09) :806-808
[9]  
Carles R., 2008, SEMICLASSICAL ANAL N
[10]  
Cazenave T, 2003, Semilinear Schrodinger Equations