Screening of Parkinsonian subtle fine-motor impairment from touchscreen typing via deep learning

被引:23
作者
Iakovakis, Dimitrios [1 ]
Chaudhuri, K. Ray [2 ,3 ]
Klingelhoefer, Lisa [4 ]
Bostantjopoulou, Sevasti [5 ]
Katsarou, Zoe [6 ]
Trivedi, Dhaval [2 ,3 ]
Reichmann, Heinz [4 ]
Hadjidimitriou, Stelios [1 ]
Charisis, Vasileios [1 ]
Hadjileontiadis, Leontios J. [1 ,7 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Elect & Comp Engn, Thessaloniki, Greece
[2] Kings Coll London, Inst Psychiat Psychol & Neurosci, London, England
[3] Kings Coll Hosp London, Parkinson Fdn Ctr Excellence, London, England
[4] Tech Univ Dresden, Dept Neurol, Dresden, Germany
[5] G Papanikolaou Hosp, Neurol Clin 3, Thessaloniki, Greece
[6] Hippokrateion Hosp, Dept Neurol, Thessaloniki, Greece
[7] Khalifa Univ Sci & Technol, Dept Elect Engn & Comp Sci, Dept Biomed Engn, Abu Dhabi, U Arab Emirates
基金
欧盟地平线“2020”;
关键词
DISEASE; COORDINATION; CARE;
D O I
10.1038/s41598-020-69369-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fine-motor impairment (FMI) is progressively expressed in early Parkinson's Disease (PD) patients and is now known to be evident in the immediate prodromal stage of the condition. The clinical techniques for detecting FMI may not be robust enough and here, we show that the subtle FMI of early PD patients can be effectively estimated from the analysis of natural smartphone touchscreen typing via deep learning networks, trained in stages of initialization and fine-tuning. In a validation dataset of 36,000 typing sessions from 39 subjects (17 healthy/22 PD patients with medically validated UPDRS Part III single-item scores), the proposed approach achieved values of area under the receiver operating characteristic curve (AUC) of 0.89 (95% confidence interval: 0.80-0.96) with sensitivity/specificity: 0.90/0.83. The derived estimations result in statistically significant (p<0.05) correlation of 0.66/0.73/0.58 with the clinical standard UPDRS Part III items 22/23/31, respectively. Further validation analysis on 9 de novo PD patients vs. 17 healthy controls classification resulted in AUC of 0.97 (0.93-1.00) with 0.93/0.90. For 253 remote study participants, with self-reported health status providing 252.000 typing sessions via a touchscreen typing data acquisition mobile app (iPrognosis), the proposed approach predicted 0.79 AUC (0.66-0.91) with 0.76/0.71. Remote and unobtrusive screening of subtle FMI via natural smartphone usage, may assist in consolidating early and accurate diagnosis of PD.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] [Anonymous], 2016, ARXIV160100960
  • [2] [Anonymous], **DATA OBJECT**, DOI DOI 10.5281/ZENODO.2571623
  • [3] Detecting Motor Impairment in Early Parkinson's Disease via Natural Typing Interaction With Keyboards: Validation of the neuroQWERTY Approach in an Uncontrolled At-Home Setting
    Arroyo-Gallego, Teresa
    Ledesma-Carbayo, Maria J.
    Butterworth, Ian
    Matarazzo, Michele
    Montero-Escribano, Paloma
    Puertas-Martin, Veronica
    Gray, Martha L.
    Giancardo, Luca
    Sanchez-Ferro, Alvaro
    [J]. JOURNAL OF MEDICAL INTERNET RESEARCH, 2018, 20 (03)
  • [4] Baldi P., 2012, P ICML WORKSH UNS TR, V27, P37
  • [5] Motor Phenotype of Decline in Cognitive Performance among Community-Dwellers without Dementia: Population-Based Study and Meta-Analysis
    Beauchet, Olivier
    Allali, Gilles
    Montero-Odasso, Manuel
    Sejdic, Ervin
    Fantino, Bruno
    Annweiler, Cedric
    [J]. PLOS ONE, 2014, 9 (06):
  • [6] Bengio Y., 2015, ARXIV
  • [7] The mPower study, Parkinson disease mobile data collected using ResearchKit
    Bot, Brian M.
    Suver, Christine
    Neto, Elias Chaibub
    Kellen, Michael
    Klein, Arno
    Bare, Christopher
    Doerr, Megan
    Pratap, Abhishek
    Wilbanks, John
    Dorsey, E. Ray
    Friend, Stephen H.
    Trister, Andrew D.
    [J]. SCIENTIFIC DATA, 2016, 3
  • [8] Chaudhuri K R., 2019, European Neurological Review, V14, P28, DOI [10.17925/ENR.2019.14.1.28, DOI 10.17925/ENR.2019.14.1.28]
  • [9] Elderly subjects are impaired in spatial coordination in fine motor control
    Contreras-Vidal, JL
    Teulings, HL
    Stelmach, GE
    [J]. ACTA PSYCHOLOGICA, 1998, 100 (1-2) : 25 - 35
  • [10] Impairment of fine motor dexterity in mild cognitive impairment and Alzheimer's disease dementia: association with activities of daily living
    de Paula, Jonas J.
    Albuquerque, Maicon R.
    Lage, Guilherme M.
    Bicalho, Maria A.
    Romano-Silva, Marco A.
    Malloy-Diniz, Leandro F.
    [J]. REVISTA BRASILEIRA DE PSIQUIATRIA, 2016, 38 (03) : 235 - 238