Screening of Parkinsonian subtle fine-motor impairment from touchscreen typing via deep learning

被引:29
作者
Iakovakis, Dimitrios [1 ]
Chaudhuri, K. Ray [2 ,3 ]
Klingelhoefer, Lisa [4 ]
Bostantjopoulou, Sevasti [5 ]
Katsarou, Zoe [6 ]
Trivedi, Dhaval [2 ,3 ]
Reichmann, Heinz [4 ]
Hadjidimitriou, Stelios [1 ]
Charisis, Vasileios [1 ]
Hadjileontiadis, Leontios J. [1 ,7 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Elect & Comp Engn, Thessaloniki, Greece
[2] Kings Coll London, Inst Psychiat Psychol & Neurosci, London, England
[3] Kings Coll Hosp London, Parkinson Fdn Ctr Excellence, London, England
[4] Tech Univ Dresden, Dept Neurol, Dresden, Germany
[5] G Papanikolaou Hosp, Neurol Clin 3, Thessaloniki, Greece
[6] Hippokrateion Hosp, Dept Neurol, Thessaloniki, Greece
[7] Khalifa Univ Sci & Technol, Dept Elect Engn & Comp Sci, Dept Biomed Engn, Abu Dhabi, U Arab Emirates
基金
欧盟地平线“2020”;
关键词
DISEASE; COORDINATION; CARE;
D O I
10.1038/s41598-020-69369-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fine-motor impairment (FMI) is progressively expressed in early Parkinson's Disease (PD) patients and is now known to be evident in the immediate prodromal stage of the condition. The clinical techniques for detecting FMI may not be robust enough and here, we show that the subtle FMI of early PD patients can be effectively estimated from the analysis of natural smartphone touchscreen typing via deep learning networks, trained in stages of initialization and fine-tuning. In a validation dataset of 36,000 typing sessions from 39 subjects (17 healthy/22 PD patients with medically validated UPDRS Part III single-item scores), the proposed approach achieved values of area under the receiver operating characteristic curve (AUC) of 0.89 (95% confidence interval: 0.80-0.96) with sensitivity/specificity: 0.90/0.83. The derived estimations result in statistically significant (p<0.05) correlation of 0.66/0.73/0.58 with the clinical standard UPDRS Part III items 22/23/31, respectively. Further validation analysis on 9 de novo PD patients vs. 17 healthy controls classification resulted in AUC of 0.97 (0.93-1.00) with 0.93/0.90. For 253 remote study participants, with self-reported health status providing 252.000 typing sessions via a touchscreen typing data acquisition mobile app (iPrognosis), the proposed approach predicted 0.79 AUC (0.66-0.91) with 0.76/0.71. Remote and unobtrusive screening of subtle FMI via natural smartphone usage, may assist in consolidating early and accurate diagnosis of PD.
引用
收藏
页数:13
相关论文
共 50 条
[1]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.5281/ZENODO.2571623
[2]  
[Anonymous], 2012, P ICML WORKSH UNS TR
[3]   Detecting Motor Impairment in Early Parkinson's Disease via Natural Typing Interaction With Keyboards: Validation of the neuroQWERTY Approach in an Uncontrolled At-Home Setting [J].
Arroyo-Gallego, Teresa ;
Ledesma-Carbayo, Maria J. ;
Butterworth, Ian ;
Matarazzo, Michele ;
Montero-Escribano, Paloma ;
Puertas-Martin, Veronica ;
Gray, Martha L. ;
Giancardo, Luca ;
Sanchez-Ferro, Alvaro .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2018, 20 (03)
[4]   Motor Phenotype of Decline in Cognitive Performance among Community-Dwellers without Dementia: Population-Based Study and Meta-Analysis [J].
Beauchet, Olivier ;
Allali, Gilles ;
Montero-Odasso, Manuel ;
Sejdic, Ervin ;
Fantino, Bruno ;
Annweiler, Cedric .
PLOS ONE, 2014, 9 (06)
[5]  
Bengio Y., 2015, CORR abs/1502.04390
[6]   The mPower study, Parkinson disease mobile data collected using ResearchKit [J].
Bot, Brian M. ;
Suver, Christine ;
Neto, Elias Chaibub ;
Kellen, Michael ;
Klein, Arno ;
Bare, Christopher ;
Doerr, Megan ;
Pratap, Abhishek ;
Wilbanks, John ;
Dorsey, E. Ray ;
Friend, Stephen H. ;
Trister, Andrew D. .
SCIENTIFIC DATA, 2016, 3
[7]  
Chaudhuri K.R., 2019, Eur. Neurol. Rev, V14, P28, DOI [DOI 10.17925/ENR.2019.14.1.28, 10.17925/ENR.2019.14.1.28]
[8]   Elderly subjects are impaired in spatial coordination in fine motor control [J].
Contreras-Vidal, JL ;
Teulings, HL ;
Stelmach, GE .
ACTA PSYCHOLOGICA, 1998, 100 (1-2) :25-35
[9]  
de Paula JJ, 2016, REV BRAS PSIQUIATR, V38, P235
[10]   The first frontier: Digital biomarkers for neurodegenerative disorders [J].
Dorsey, E. Ray ;
Papapetropoulos, Spyros ;
Xiong, Mulin ;
Kieburtz, Karl .
Digital Biomarkers, 2017, 1 (01) :6-13