Partial Convexification of General MIPs by Dantzig-Wolfe Reformulation

被引:0
|
作者
Bergner, Martin [1 ]
Caprara, Alberto [2 ]
Furini, Fabio [1 ]
Luebbecke, Marco E. [1 ]
Malaguti, Enrico [2 ]
Traversi, Emiliano [2 ]
机构
[1] Rhein Westfal TH Aachen, Chair Operat Res, Templergraben 64, D-52056 Aachen, Germany
[2] Univ Bologna, DEIS, Viale Risorgimento 2, I-40136 Bologna, Italy
来源
INTEGER PROGRAMMING AND COMBINATORAL OPTIMIZATION, IPCO 2011 | 2011年 / 6655卷
关键词
INTEGER PROGRAMS; DECOMPOSITION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Dantzig-Wolfe decomposition is well-known to provide strong dual bounds for specially structured mixed integer programs (MIPs) in practice. However, the method is not implemented in any state-of-the-art MIP solver: it needs tailoring to the particular problem; the decomposition must be determined from the typical bordered block-diagonal matrix structure; the resulting column generation subproblems must be solved efficiently; etc. We provide a computational proof-of-concept that the process can be automated in principle, and that strong dual bounds can be obtained on general MIPs for which a solution by a decomposition has not been the first choice. We perform an extensive computational study on the 0-1 dynamic knapsack problem (without block-diagonal structure) and on general MIPLIB2003 instances. Our results support that Dantzig-Wolfe reformulation may hold more promise as a general-purpose tool than previously acknowledged by the research community.
引用
收藏
页码:39 / 51
页数:13
相关论文
共 50 条
  • [1] Uncommon Dantzig-Wolfe Reformulation for the Temporal Knapsack Problem
    Caprara, Alberto
    Furini, Fabio
    Malaguti, Enrico
    INFORMS JOURNAL ON COMPUTING, 2013, 25 (03) : 560 - 571
  • [2] Automatic Dantzig-Wolfe reformulation of mixed integer programs
    Bergner, Martin
    Caprara, Alberto
    Ceselli, Alberto
    Furini, Fabio
    Luebbecke, Marco E.
    Malaguti, Enrico
    Traversi, Emiliano
    MATHEMATICAL PROGRAMMING, 2015, 149 (1-2) : 391 - 424
  • [3] Solving the Temporal Knapsack Problem via Recursive Dantzig-Wolfe Reformulation
    Caprara, Alberto
    Furini, Fabio
    Malaguti, Enrico
    Traversi, Emiliano
    INFORMATION PROCESSING LETTERS, 2016, 116 (05) : 379 - 386
  • [4] DANTZIG-WOLFE DECOMPOSITION ALGORITHM
    APPA, GM
    GONCALVE.AS
    OPERATIONAL RESEARCH QUARTERLY, 1969, 20 (02) : 275 - &
  • [5] Algorithm 928: A General, Parallel Implementation of Dantzig-Wolfe Decomposition
    Rios, Joseph
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2013, 39 (03):
  • [6] Dantzig-Wolfe decomposition of variational inequalities
    Fuller J.D.
    Chung W.
    Computational Economics, 2005, 25 (4) : 303 - 326
  • [7] Consistency Cuts for Dantzig-Wolfe Reformulations
    Clausen, Jens Vinther
    Lusby, Richard
    Ropke, Stefan
    OPERATIONS RESEARCH, 2022, : 2883 - 2905
  • [8] Pricing filtering in Dantzig-Wolfe decomposition
    Mehamdi, Abdellah Bulaich
    Lacroix, Mathieu
    Martin, Sebastien
    OPERATIONS RESEARCH LETTERS, 2025, 58
  • [9] Recovering Dantzig-Wolfe Bounds by Cutting Planes
    Chen, Rui
    Gunluk, Oktay
    Lodi, Andrea
    OPERATIONS RESEARCH, 2024,
  • [10] A data driven Dantzig-Wolfe decomposition framework
    Basso, Saverio
    Ceselli, Alberto
    MATHEMATICAL PROGRAMMING COMPUTATION, 2023, 15 (01) : 153 - 194