DECOMPOSITION AND PARTIAL TRACE OF POSITIVE MATRICES WITH HERMITIAN BLOCKS

被引:12
作者
Bourin, J-C. [1 ]
Lee, Eun-Young [2 ]
机构
[1] Univ Franche Comte, Math Lab, F-25000 Besancon, France
[2] Kyungpook Natl Univ, Dept Math, Taegu 702701, South Korea
基金
新加坡国家研究基金会;
关键词
Positive definite matrices; norm inequalities; partial trace; separable state; STATES;
D O I
10.1142/S0129167X13500109
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H = [A(s, t)] be a positive definite matrix written in beta x beta Hermitian blocks and let Delta = A(1,1) + ... + A(beta, beta) be its partial trace. Assume that beta = 2(p) for some p is an element of N. Then, up to a direct sum operation, H is the average of beta matrices isometrically congruent to Delta. A few corollaries are given, related to important inequalities in quantum information theory such as the Nielsen-Kempe separability criterion.
引用
收藏
页数:13
相关论文
共 14 条
[1]   Unique decompositions, faces, and automorphisms of separable states [J].
Alfsen, Erik ;
Shultz, Fred .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (05)
[2]  
Bhatia R, 2007, PRINC SER APPL MATH, P1
[3]   Positive matrices partitioned into a small number of Hermitian blocks [J].
Bourin, Jean-Christophe ;
Lee, Eun-Young ;
Lin, Minghua .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) :2591-2598
[4]   Unitary orbits of Hermitian operators with convex or concave functions [J].
Bourin, Jean-Christophe ;
Lee, Eun-Young .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2012, 44 :1085-1102
[5]   On a decomposition lemma for positive semi-definite block-matrices [J].
Bourin, Jean-Christophe ;
Lee, Eun-Young ;
Lin, Minghua .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (07) :1906-1912
[6]   NORM AND ANTI-NORM INEQUALITIES FOR POSITIVE SEMI-DEFINITE MATRICES [J].
Bourin, Jean-Christophe ;
Hiai, Fumio .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2011, 22 (08) :1121-1138
[7]  
Chen K, 2003, QUANTUM INF COMPUT, V3, P193
[8]  
Clifford W. K., 1878, American Journal of Mathematics, V1, P350, DOI [DOI 10.2307/2369379, 10.2307/2369379]
[9]   Introduction to representations of the canonical commutation and anticommutation relations [J].
Derezinski, J. .
LARGE COULOMB SYSTEMS, 2006, 695 :63-143
[10]  
Hiroshima T., 2003, PHYS REV LETT, V86, P5184