On-line parameter estimation for infinite-dimensional dynamical systems

被引:62
|
作者
Baumeister, J
Scondo, W
Demetriou, MA
Rosen, IG
机构
[1] BOISE STATE UNIV,DEPT MATH & COMP SCI,BOISE,ID 83726
[2] UNIV SO CALIF,DEPT MATH,CTR APPL MATH SCI,LOS ANGELES,CA 90089
关键词
on-line estimation; adaptive identification; parameter convergence; persistence of excitation; distributed parameter systems; infinite-dimensional systems; finite-dimensional approximation;
D O I
10.1137/S0363012994270928
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The on-line or adaptive identification of parameters in abstract linear and nonlinear infinite-dimensional dynamical systems is considered. An estimator in the form of an infinite-dimensional linear evolution system having the state and parameter estimates as its states is defined. Convergence of the state estimator is established via a Lyapunov estimate. The finite-dimensional notion of a plant being sufficiently rich or persistently excited is extended to infinite dimensions. Convergence of the parameter estimates is established under the additional assumption that the plant is persistently excited. A finite-dimensional approximation theory is developed, and convergence results are established. Numerical results for examples involving the estimation of both constant and functional parameters in one-dimensional linear and nonlinear heat or diffusion equations and the estimation of stiffness and damping parameters in a one-dimensional wave equation with Kelvin-Voigt viscoelastic damping are presented.
引用
收藏
页码:678 / 713
页数:36
相关论文
共 50 条
  • [21] Observing Lyapunov Exponents of Infinite-Dimensional Dynamical Systems
    Ott, William
    Rivas, Mauricio A.
    West, James
    JOURNAL OF STATISTICAL PHYSICS, 2015, 161 (05) : 1098 - 1111
  • [22] Observing Lyapunov Exponents of Infinite-Dimensional Dynamical Systems
    William Ott
    Mauricio A. Rivas
    James West
    Journal of Statistical Physics, 2015, 161 : 1098 - 1111
  • [23] Controllability of Switched Infinite-dimensional Linear Dynamical Systems
    Klamka, Jerzy
    Niezabitowski, Michal
    2014 19TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2014, : 171 - 175
  • [24] Infinite-dimensional dynamical systems induced by interval maps
    Huang, Yu
    Feng, Zhaosheng
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 (3-4): : 509 - 524
  • [25] Robustness of exponential dichotomies in infinite-dimensional dynamical systems
    Pliss V.A.
    Sell G.R.
    Journal of Dynamics and Differential Equations, 1999, 11 (3) : 471 - 513
  • [26] Ideal turbulence and bifurcations in infinite-dimensional dynamical systems
    Sharkovsky, A
    Fedorenko, V
    2005 INTERNATIONAL CONFERENCE ON PHYSICS AND CONTROL (PHYSCON), 2005, : 216 - 219
  • [27] Asymptotics of solutions of infinite-dimensional homogeneous dynamical systems
    Cheban, DN
    MATHEMATICAL NOTES, 1998, 63 (1-2) : 102 - 111
  • [28] ACOUSTIC WAVE GUIDES AS INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS
    Aalto, Atte
    Lukkari, Teemu
    Malinen, Jarmo
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2015, 21 (02) : 324 - 347
  • [29] Adaptive parameter estimation for infinite-dimensional LTI systems with finite-time convergence
    Kapetina, Mirna N.
    Pisano, Alessandro
    Rapaic, Milan R.
    Usai, Elio
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 1722 - 1727
  • [30] Lower bound for quadratic losses of estimation of infinite-dimensional parameter
    Radavičius M.
    Lithuanian Mathematical Journal, 1997, 37 (1) : 54 - 65