Comparison of Two Approaches to Modeling Atmospheric Aerosol Particle Size Distributions

被引:0
作者
Zdimal, Vladimir [1 ]
Brabec, Marek [2 ,3 ]
Wagner, Zdenek [4 ]
机构
[1] Acad Sci Czech Republic, Inst Chem Proc Fundamentals, Lab Aerosol Chem & Phys, CR-16502 Prague 6, Czech Republic
[2] Natl Inst Publ Hlth, Dept Biostat & Informat, Prague 10042 10, Czech Republic
[3] Inst Comp Sci, Dept Nonlinear Modeling, Prague 18207 8, Czech Republic
[4] Acad Sci Czech Republic, Inst Chem Proc Fundamentals, E Hala Lab Thermodynam, CR-16502 Prague 6, Czech Republic
关键词
Particle size distribution; Lognormal mixture; Semiparametric modeling; Nonparametric modeling; Gnostic theory of uncertain data;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper compares two approaches to modeling (smoothing) aerosol particle size distribution (particle counts for specified diameter intervals): i) the semiparametric approach based on a maximum likelihood fitting of lognormal (LN) mixtures at each time separately, followed by smoothing parameter tracks, ii) the nonparametric approach based on a kernel-like smoothing as an application of the gnostic theory of uncertain data. The specific advantages and disadvantages of both the serniparametric and nonparametric approaches are discussed and illustrated using real data containing a day-long time series of size spectra measurements.
引用
收藏
页码:392 / 410
页数:19
相关论文
共 20 条
[1]  
Agresti A., 1990, Analysis of categorical data
[2]  
[Anonymous], 1994, Modern applied statistics with S-Plus
[3]  
Box GEP., 1987, EMPIRICAL MODEL BUIL
[4]  
Carroll R. J., 1988, TRANSFORMATION WEIGH
[5]   LOCALLY WEIGHTED REGRESSION - AN APPROACH TO REGRESSION-ANALYSIS BY LOCAL FITTING [J].
CLEVELAND, WS ;
DEVLIN, SJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (403) :596-610
[6]  
Green PJ, 1995, BIOMETRIKA, V82, P711, DOI 10.2307/2337340
[7]   A NEW THEORETICAL AND ALGORITHMICAL BASIS FOR ESTIMATION, IDENTIFICATION AND CONTROL [J].
KOVANIC, P .
AUTOMATICA, 1986, 22 (06) :657-674
[8]   THE CONTROLLED RANDOM SEARCH ALGORITHM IN OPTIMIZING REGRESSION-MODELS [J].
KRIVY, I ;
TVRDIK, J .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1995, 20 (02) :229-234
[9]   Formation and growth rates of ultrafine atmospheric particles:: a review of observations [J].
Kulmala, M ;
Vehkamäki, H ;
Petäjä, T ;
Dal Maso, M ;
Lauri, A ;
Kerminen, VM ;
Birmili, W ;
McMurry, PH .
JOURNAL OF AEROSOL SCIENCE, 2004, 35 (02) :143-176
[10]   Dynamics of fine particles and photo-oxidants in the Eastern Mediterranean (SUB-AERO) [J].
Lazaridis, M. ;
Eleftheriadis, K. ;
Smolik, J. ;
Colbeck, I. ;
Kallos, G. ;
Drossinos, Y. ;
Zdimal, V. ;
Vecera, Z. ;
Mihalopoulos, N. ;
Mikuska, P. ;
Bryant, C. ;
Housiadas, C. ;
Spyridaki, A. ;
Astitha, Marina ;
Havranek, V. .
ATMOSPHERIC ENVIRONMENT, 2006, 40 (32) :6214-6228