LDU FACTORIZATION OF NONSINGULAR TOTALLY NONPOSITIVE MATRICES

被引:16
作者
Canto, Rafael [1 ]
Koev, Plamen [2 ]
Ricarte, Beatriz [1 ]
Urbano, Ana M. [1 ]
机构
[1] Univ Politecn Valencia, Inst Matemat Multidisciplinar, E-46071 Valencia, Spain
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
关键词
nonsingular matrix; totally nonpositive matrix; LDU factorization;
D O I
10.1137/060662897
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An n x n real matrix A is said to be (totally negative) totally nonpositive if every minor is (negative) nonpositive. In this paper, we study the properties of a totally nonpositive matrix and characterize the case of a nonsingular totally nonpositive matrix A, with a(11) < 0 in terms of its LDU factorization (L(U)) is a unit lower- (upper-) triangular matrix, respectively, and D is a diagonal matrix). This characterization allows us to significantly reduce the number of minors to be checked in order to decide the total nonpositivity of a nonsingular matrix with a negative ( 1, 1) entry.
引用
收藏
页码:777 / 782
页数:6
相关论文
共 12 条
[1]   TOTALLY POSITIVE MATRICES [J].
ANDO, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 90 :165-219
[2]  
[Anonymous], 1996, MATH APPL
[3]  
[Anonymous], 2000, ELECTRON J LINEAR AL
[4]  
Cryer C. W., 1973, Linear Algebra and Its Applications, V7, P83, DOI 10.1016/0024-3795(73)90039-6
[5]  
Fallat S., 2000, ELECTRON J LINEAR AL, V7, P1
[6]   Compressions of totally positive matrices [J].
Fallat, SM ;
Herman, A ;
Gekhtman, MI ;
Johnson, CR .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2006, 28 (01) :68-80
[7]  
Gasca M, 1996, MATH APPL, V359, P109
[8]   TOTAL POSITIVITY AND NEVILLE ELIMINATION [J].
GASCA, M ;
PENA, JM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 165 :25-44
[9]   TOTAL POSITIVITY, QR FACTORIZATION, AND NEVILLE ELIMINATION [J].
GASCA, M ;
PENA, JM .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (04) :1132-1140
[10]  
GASCA M, 1994, LINEAR ALGEBRA APPL, V198, P133