Bifurcation Analysis for a Predator-Prey Model with Time Delay and Delay-Dependent Parameters

被引:0
|
作者
Xu, Changjin [1 ]
机构
[1] Guizhou Univ Finance & Econ, Guizhou Key Lab Econ Syst Simulat, Sch Math & Stat, Guiyang 550004, Peoples R China
基金
中国国家自然科学基金;
关键词
HOPF-BIFURCATION; STABILITY; SYSTEM;
D O I
10.1155/2012/264870
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of stage-structured predator-prey model with time delay and delay-dependent parameters is considered. Its linear stability is investigated and Hopf bifurcation is demonstrated. Using normal form theory and center manifold theory, some explicit formulae for determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained. Finally, numerical simulations are performed to verify the analytical results.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Hopf bifurcation in a partial dependent predator-prey system with delay
    Zhao, Huitao
    Lin, Yiping
    CHAOS SOLITONS & FRACTALS, 2009, 42 (02) : 896 - 900
  • [22] A Predator-Prey Model in the Chemostat with Time Delay
    Fan, Guihong
    Wolkowicz, Gail S. K.
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 2010
  • [23] The stability and Hopf bifurcation for a predator-prey system with time delay
    Celik, Canan
    CHAOS SOLITONS & FRACTALS, 2008, 37 (01) : 87 - 99
  • [24] Bifurcation and stability of a diffusive predator-prey model with the fear effect and time delay
    Wang, Huatao
    Zhang, Yan
    Ma, Li
    CHAOS, 2023, 33 (07)
  • [25] Stability and Local Hopf Bifurcation for a Predator-Prey Model with Delay
    Xue, Yakui
    Wang, Xiaoqing
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012
  • [26] Stability and Hopf bifurcation of a ratio-dependent predator-prey model with time delay and stage structure
    Song, Yan
    Li, Ziwei
    Du, Yue
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2016, (99) : 1 - 23
  • [27] Analysis of a mathematical predator-prey model with delay
    Dolgii, Yu. F.
    Nidchenko, S. N.
    DIFFERENTIAL EQUATIONS, 2008, 44 (06) : 861 - 865
  • [28] Analysis of a mathematical predator-prey model with delay
    Yu. F. Dolgii
    S. N. Nidchenko
    Differential Equations, 2008, 44 : 861 - 865
  • [29] Analysis of a Predator-Prey Model with Distributed Delay
    Chandrasekar, Gunasundari
    Boulaaras, Salah Mahmoud
    Murugaiah, Senthilkumaran
    Gnanaprakasam, Arul Joseph
    Cherif, Bahri Belkacem
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [30] Analysis of a spatial predator-prey model with delay
    Biao Wang
    Ai-Ling Wang
    Yong-Jiang Liu
    Zhao-Hua Liu
    Nonlinear Dynamics, 2010, 62 : 601 - 608