EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR DIRICHLET PROBLEMS INVOLVING THE P(X)-LAPLACE OPERATOR

被引:0
|
作者
Avci, Mustafa [1 ]
机构
[1] Dicle Univ, Fac Sci, Dept Math, TR-21280 Diyarbakir, Turkey
关键词
p(x)-Laplace operator; variable exponent Lebesgue-Sobolev spaces; variational approach; Fountain theorem; EQUATIONS; THEOREMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study superlinear Dirichlet problems involving the p(x)-Laplace operator without using the Ambrosetti-Rabinowitz's superquadraticity condition. Using a variant Fountain theorem, but not including Palais-Smale type assumptions, we prove the existence and multiplicity of the solutions.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Existence and Multiplicity of Solutions for a Steklov Eigenvalue Problem Involving The p(x)-Laplacian-like Operator
    Boukhsas, A.
    Karim, B.
    Zerouali, A.
    Chakrone, O.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
  • [32] Existence results for a class of nonlocal problems involving the (p1(x), p2(x))-Laplace operator
    Allaoui, Mostafa
    Darhouche, Omar
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2018, 63 (01) : 76 - 89
  • [33] On some singular problems involving the fractional p(x,.) -Laplace operator
    Ghanmi, A.
    Chung, N. T.
    Saoudi, K.
    APPLICABLE ANALYSIS, 2023, 102 (01) : 275 - 287
  • [34] On a class of nonlinear problems involving a p(x)-Laplace type operator
    Mihai Mihăilescu
    Czechoslovak Mathematical Journal, 2008, 58
  • [36] EXISTENCE RESULTS FOR PROBLEMS INVOLVING THE p(x)-BIHARMONIC OPERATOR
    Messaoudi, Abdellatif
    MATHEMATICAL REPORTS, 2023, 25 (04): : 527 - 542
  • [37] On existence and concentration of solutions to a class of quasilinear problems involving the 1-Laplace operator
    Alves, Claudianor O.
    Pimenta, Marcos T. O.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (05)
  • [38] On existence and concentration of solutions to a class of quasilinear problems involving the 1-Laplace operator
    Claudianor O. Alves
    Marcos T. O. Pimenta
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [39] Existence of solutions to an initial Dirichlet problem of evolutional p(x)-Laplace equations
    Lian, Songzhe
    Gao, Wenjie
    Yuan, Hongjun
    Cao, Chunling
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (03): : 377 - 399
  • [40] Existence and multiplicity of solutions for some Steklov problem involving (p1(x), p2(x))-Laplacian operator
    Chammem, Rym
    Sahbani, Abdelhakim
    APPLICABLE ANALYSIS, 2023, 102 (03) : 709 - 724